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ABSTRACT  
The rapid acceleration of digitalization, the widespread adoption of mobile technology, and shifting consumer 

purchasing patterns have elevated the strategic importance of omnichannel frameworks within retail supply chain 

networks. The convergence of physical stores, online platforms, mobile applications, and marketplaces has 

resulted in heightened customer expectations for smooth interactions across all touchpoints. Inventory allocation, 

order fulfillment, inter-channel transfers, and delivery decisions are then expressed as a multidimensional planning 

problem. In the cosmetics industry, effective decision-making relies on a carefully planned inventory placement 

strategy that incorporates multiple distribution channels, directing customer demand to the most suitable channel 

and controlling goods movement quantities between channels to achieve efficient operations and the highest 

possible profitability. This study proposes a novel mixed-integer linear programming (MILP) model designed to 

maximize the total profit within an omnichannel distribution network. The model combines sales revenue, 

inventory costs, transportation and transfer expenses, and initial procurement costs to guide product distribution 

across channels. By integrating these elements, it provides a unified framework for determining shipments between 

channels and setting initial stock levels. The model was evaluated on a genuine cosmetics dataset via FICO Xpress, 

with its solution quality, computational efficiency, and scenario-based sensitivity assessed across diverse product, 

channel, and time configurations. The study’s findings indicate that the proposed model not only bridges the 

existing gap in multi-channel decision-making research but also provides a practical decision-support tool for 

managing multi-channel logistics networks. Furthermore, the model has strong potential to be enhanced through 

heuristic or metaheuristic extensions, enabling even higher performance for large-scale problem instances. 

Keywords: Omnichannel distribution, Inventory optimization, Multi-period planning, Mixed-integer linear 

programming  

JEL Clasifications: C61, L81, M11, M21 

 

Bütüncül Kanallı Envanter Optimizasyonu için Yeni Bir Karma Tamsayılı 

Doğrusal Programlama Modeli: Ampirik Bir Uygulama1 

 
ÖZET 
Dijitalleşmenin hızlı ivmelenmesi, mobil teknolojilerin yaygın biçimde benimsenmesi ve tüketici satın alma 

davranışlarındaki değişim, perakende tedarik zinciri ağları içerisinde bütüncül kanallı yapıların stratejik önemini 

artırmıştır. Fiziksel mağazalar, çevrimiçi platformlar, mobil uygulamalar ve pazar yerlerinin birbirine yaklaşması, 

tüm temas noktalarında kesintisiz ve bütünleşik etkileşim beklentilerini beraberinde getirmiştir. Bu bağlamda, 

envanter tahsisi, sipariş karşılama, kanallar arası transferler ve teslimat kararları çok boyutlu bir planlama problemi 

olarak ele alınmaktadır. Kozmetik sektöründe etkin karar verme süreci; birden fazla dağıtım kanalını içeren, 

                                                           
1This article is based on the Zeynep Örnek’s PhD dissertation (A Model For A Meta-Heurıstic Framework For A 

Machine Learning-Focused Approach Omnichannel Supply Chain)  conducted at Istanbul University Cerrahpasa 

under the supervision of Assoc. Prof. Dr. Ersin Namlı. 
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müşteri talebini en uygun kanala yönlendiren ve kanallar arasındaki ürün hareket miktarlarını kontrol ederek 

operasyonel verimliliği ve kârlılığı en üst düzeye çıkarmayı amaçlayan dikkatle tasarlanmış bir envanter 

konumlandırma stratejisine dayanmaktadır. Bu çalışma, bütüncül kanallı bir dağıtım ağı içerisinde toplam kârı 

maksimize etmeyi amaçlayan yeni bir karma tamsayılı doğrusal programlama (MILP) modeli önermektedir. 

Model; satış gelirleri, stok bulundurma maliyetleri, taşıma ve transfer giderleri ile başlangıç tedarik maliyetlerini 

bütünleşik bir yapı altında ele alarak ürünlerin kanallar arasındaki dağıtımını yönlendirmektedir. Bu unsurların 

entegrasyonu sayesinde, kanallar arası sevkiyat kararları ile başlangıç stok seviyelerinin belirlenmesine yönelik 

birleşik bir karar destek çerçevesi sunulmaktadır. Model, gerçek bir kozmetik sektörü veri seti kullanılarak FICO 

Xpress ortamında test edilmiş; çözüm kalitesi, hesaplama etkinliği ve senaryo bazlı duyarlılık analizleri farklı ürün, 

kanal ve zaman yapılandırmaları altında değerlendirilmiştir. Elde edilen bulgular, önerilen modelin çok kanallı 

karar verme literatüründeki mevcut boşluğu doldurmakla kalmayıp, aynı zamanda çok kanallı lojistik ağların 

yönetiminde uygulanabilir bir karar destek aracı sunduğunu göstermektedir. Ayrıca modelin, büyük ölçekli 

problem örneklerinde daha yüksek performans elde edilebilmesi amacıyla sezgisel veya meta-sezgisel yaklaşımlar 

ile geliştirilmeye uygun güçlü bir potansiyele sahip olduğu değerlendirilmektedir. 

Anahtar Kelimeler: Bütüncül kanallı dağıtım, Envanter optimizasyonu, Çok dönemli planlama, Karma tamsayılı 

doğrusal programlama 

Jel Sınıflaması: C61, L81, M11, M21 

 

1. Introduction 

 The retail sector has been significantly affected by digital technology, primarily driven by rapid 

technological advancements, an expansion of several sales channels, and increasing customer 

demand for seamless interactions across multiple touchpoints. Rapid progress in these areas has 

resulted in quicker rollout of omnichannel frameworks. In 2013, Brynjolfsson, Hu, and Rahman 

discovered that consumers aim for a hassle-free interaction at every touchpoint. Bell, Gallino, 

and Moreno (2014) noted that combining online and offline operations is crucial for attaining 

both customer satisfaction and logistical effectiveness. As Shankar et al. (2022) noted, a 

successful omnichannel transformation necessitates a fundamental organizational framework 

that encompasses a complete overhaul of sales channels, demand management methods, 

inventory placement, and operational procedures. 

 The cosmetics industry is subject to considerable pressure stemming from short product 

lifecycles, extensive product assortments, and pronounced demand fluctuations during seasonal 

and promotional periods. The interplay of these factors underscores the necessity for expedited 

delivery and a highly responsive logistics network. Melacini et al. (2018), along with Hübner, 

Holzapfel, and Kuhn (2016), stressed the significance of keeping precise inventory records, 

creating effective distribution systems, and guaranteeing on-time product deliveries. The 

requirements are particularly crucial in the cosmetics and personal care sectors, where product 

ranges often exhibit significant complexity. Assigning customer orders to fulfillment nodes, 

managing inter-channel transfer flows, setting initial inventory levels, and positioning products 

across warehouses and channels are interconnected components of a multidimensional 

optimization problem involving multiple decision layers. 

While there is a substantial amount of existing research on multichannel and omnichannel 

supply chain planning, most recent models mainly focus on reducing costs (Agatz et al., 2008; 

Li et al., 2021). In most modeling studies, channel switching is treated as a fixed parameter and 

the initial inventory levels are assumed to be constant. Only a small subset of existing studies 

incorporates sales revenues directly into the objective function (Zhang et al., 2024; Lu et al., 

2023; Chen et al., 2023; Choudhury & Venkatesh, 2022). Although these studies provide 

meaningful insights, there remains a clear need for more integrated decision-making models, 

especially in high-variety and high-velocity omnichannel settings. 

A review of the literature reveals 4 critical gaps: 

• The scarcity of models that treat initial inventory levels as decision variables, 
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• The lack of integrated approaches that jointly optimize inter-channel transfers and 

channel–customer fulfillment, 

• The limited incorporation of profit maximization within multi-period planning 

structures, 

• The absence of empirically validated decision models tested on real-world data. 

This study addresses existing knowledge gaps by introducing a comprehensive framework built 

around a mixed-integer linear programming (MILP) model. The framework covers product–

channel allocation, channel–customer order fulfillment, inter-channel transfer flows, and the 

determination of the initial inventory levels. The model adopts a profit-oriented structure by 

jointly optimizing sales revenues alongside holding, transfer, transportation, and initial 

procurement costs. The model is evaluated using a real dataset from a cosmetics company, 

demonstrating that the proposed method is both theoretically valid and practically useful as a 

decision-support system.  

The key contributions of this study can be summarized as follows: 

 (1) Introducing an applied profit maximization model in which the initial inventory levels are 

optimized as decision variables; 

(2) Developing one of the few integrated models that jointly optimizes inter-channel transfers 

and channel–customer fulfillment within a single formulation; 

(3) Validating the model on a real-world omnichannel cosmetics distribution network, thereby 

demonstrating both theoretical and practical external validity. 

2. Literature Review 

Omnichannel retailing establishes a distribution system that allows consumers to move 

seamlessly across physical stores, e-commerce platforms, mobile applications, and online 

marketplaces. This structure requires a high degree of integration and coordination 

(Brynjolfsson et al., 2013; Bell et al., 2014; Shankar et al., 2022). This transformation reshapes 

not only sales channels but also operational decision structures that influence inventory 

visibility, logistics processes, channel integration, and the overall customer experience. A 

review of omnichannel operations by Almeida et al. in 2020 noted that channel integration has 

a considerable impact on logistics efficiency, service levels, and inventory accuracy. Studies by 

Hübner et al. in 2016 demonstrated that omnichannel systems are complex to operate due to the 

numerous customer touchpoints.  

Previous research has laid a strong foundation for supply chain and network design. 

Contributions have been substantial in identifying optimal locations for distribution centers, 

determining suitable capacity levels, and synchronizing operations across different channel 

configurations, as noted by Croxton et al. (2002), van der Vorst & Beulens (2002), and Simchi-

Levi et al. (2008). In contrast to traditional multichannel structures, omnichannel networks 

involve stronger inter-channel interactions and more heterogeneous customer behavior. Gallino 

and Moreno (2014) investigated the operational implications of jointly managing physical and 

digital channels, whereas Melacini et al. (2018) argued that visibility, delivery speed, and 

flexibility requirements necessitate a redesign of logistics processes in omnichannel 

environments. From this perspective, Guerrero-Lorente et al. (2020) developed network design 

models that consider channel preferences, and Millstein (2022) demonstrated the direct effect 

of warehouse placement and capacity choices on profitability. Vazquez-Noguerol et al. (2022) 

conducted an applied examination of e-fulfillment models that jointly consider storage, picking, 

and delivery processes in supermarket networks. 
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Inventory optimization research focuses on inventory positioning, safety stock, and the 

coordination of inventory flows in multi-echelon distribution systems under uncertainty. 

Foundational studies—including Raman and Fisher (1992), Tang (2006), and Cachon and 

Terwiesch (2009)—highlight the financial consequences of inventory decisions. Building on 

this work, Srinivasan and Kesavan (2011) showed that inventory efficiency is closely linked to 

financial performance in retail chains. For multi-echelon systems, Simchi-Levi et al. (2008) and 

Feng and Hu (2022) emphasized the need for an integrated consideration of inventory 

placement and flow coordination. Wang and Hu (2019) showed that jointly optimizing 

warehouse assignment and inventory levels improves system efficiency, and Goswami and 

Chauhan (2021) addressed product allocation in multichannel structures within an optimization 

framework. 

Fulfillment research, particularly in the context of online demand, examines the cost and 

service-level implications of fulfilling orders from either warehouses or stores. Agatz et al. 

(2008) classify the cost components of e-fulfillment strategies in multichannel distribution 

networks, while Liu et al. (2020) present an integrated framework that optimizes inventory 

levels and delivery costs. Li et al. (2021) explored how warehouses and stores interact within 

hybrid fulfillment structures. In related work, Chen et al. (2023) and Choudhury and Venkatesh 

(2022) investigated strategies for optimizing multi-period demand, inventory levels, and 

service-level trade-offs. The operational importance of inter-channel transfers is further 

highlighted in studies by Gong and Liu (2018), Zhang and He (2022), and Lu et al. (2023). 

The assortment planning literature also plays a meaningful role in omnichannel contexts, 

analyzing how channel behavior influences demand. Hense and Hübner (2022) proposed 

channel-based assortment optimization, while Lo et al. (2022) modeled the effects of customer 

channel preferences on product choice. Vasilyev et al. (2025) showed that jointly optimizing 

assortment and inventory levels significantly enhances profitability. 

Profit-maximization-oriented models remain relatively limited in the literature. Caro and 

Gallien (2010) investigated the relationship between competition, inventory, and revenues, 

whereas Harsha et al. (2016, 2017) analyzed the integrated nature of pricing and fulfillment 

decisions under omnichannel settings. Pichka et al. (2022) explained the interaction between 

pricing and fulfillment in multichannel environments. Saghafian (2022) and Zhou et al. (2021) 

studied channel migration and cross-channel fulfillment dynamics, while Zhang et al. (2024) 

modeled the revenue impact of channel-based price differentiation. Qiu et al. (2021, 2025) 

developed integrated models that jointly consider pricing, ordering, replenishment, and capacity 

sharing. 

Methods based on simulation are widely used to investigate uncertainty, such as stockout risk, 

demand variability, and operational performance, as seen by Rai et al. (2021). Tools grounded 

in data and analytical modeling are increasingly used to analyze supply chain behavior, enhance 

demand forecasting, and strengthen customer segmentation initiatives. This trend is well 

documented in recent studies by Almeida et al. (2020), Gupta and Ivanov (2020), and Melacini 

et al. (2018). 

In summary, despite the growing body of research, only a limited number of studies integrate 

inter-channel transfers and channel–customer fulfillment, treat initial inventory levels as 

decision variables, incorporate multi-period structures, and jointly optimize all logistics cost 

and revenue components within a profit-maximization framework. Addressing this gap, the 

present study offers an integrated and profit-oriented optimization model, tested on real data 

from the cosmetics sector, thereby contributing to the literature both methodologically and 

practically. 
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3. Model Formulation and Solution Approach  

3.1. Model Overview 

The proposed mixed-integer linear programming (MILP) model optimizes inventory 

positioning, customer fulfillment, inter-channel transfers, and initial procurement decisions 

within a multi-period omnichannel distribution network. The joint formulation determines 

inventory levels for each channel and period, allocates customer demand, identifies inter-

channel transfer quantities and directions, and defines the initial stock procurement for the 

planning horizon. 

In contrast to traditional multi-channel formulations that address inventory placement, 

fulfillment, and redistribution as separate subsystems, the proposed model integrates these 

decisions through a unified profit-maximizing structure that reflects the operational 

characteristics of omnichannel cosmetics distribution—high product variety, short life cycles, 

heterogeneous channels, and rapidly changing customer expectations. Modeling the initial 

inventory as a decision variable further enhances strategic flexibility by enabling proactive 

stock positioning before the first period. 

3.2. Mathematical Model 

The mathematical formulation follows the standard notation used in the multi-period 

distribution network optimization. 

3.2.1. Sets and Indices 

i ∈ I  : Products (SKU-level items in the assortment) 

m ∈ M  : Customers (demand points / sales destinations) 

k, q ∈ K : Sales channels where k = 0 represents the factory 

t ∈ T  : Time periods (planning horizon) 

 

3.2.2. Decision Variables 

Xᵢ, k,m,t : Quantity shipped from channel k to customer m (fulfillment decision). 

Zᵢ, k,q,t : Quantity transferred from channel k to channel q (redistribution decision). 

Sᵢ, k,t  : Inventory level of product i at channel k (end-of-period stock). 

Yᵢ  : Initial procurement quantity of product i (beginning inventory decision 

variable). 

 

3.2.3. Parameters 

Pᵢₘ  : Unit selling price of product i for customer m. 

hᵢ  : The holding cost associated with product i. 

uᵢₖq : Inter-channel transfer cost of product i from channel k to channel q. 

vᵢₖₘ  : Delivery cost of product i from channel k to customer m. 

cᵢ  : Initial procurement cost of product i. 

dᵢₘₜ  : Demand for product i by customer m in period t. 
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3.2.4. Objective Function 

The objective is to maximize total profit, defined as total sales revenue minus the sum of 

inventory holding, inter-channel transfer, customer delivery, and initial procurement costs: 

maxΠ =∑ ∑ ∑∑𝑃𝑖𝑚𝑋𝑖,𝑘,𝑚,𝑡
𝑡∈𝑇𝑘∈𝐾𝑚∈𝑀𝑖∈𝐼⏟                

Sales Revenue

−∑∑∑ℎ𝑖𝑆𝑖,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼⏟          

Inventory Holding Cost

−∑∑∑∑𝑢𝑖𝑘𝑞𝑍𝑖,𝑘,𝑞,𝑡
𝑡∈𝑇𝑞∈𝐾𝑘∈𝐾𝑖∈𝐼⏟                

Inter-Channel Transfer Cost

−∑∑ ∑ ∑𝑣𝑖𝑘𝑚𝑋𝑖,𝑘,𝑚,𝑡
𝑡∈𝑇𝑚∈𝑀𝑘∈𝐾𝑖∈𝐼⏟                

Customer Delivery Cost

− ∑𝑐𝑖𝑌𝑖
𝑖∈𝐼⏟    

Initial Procurement Cost

 (1) 

  

This formulation captures all major financial components in omnichannel operations and 

provides a comprehensive economic representation of inventory, fulfillment, and transfer 

decisions. 

3.2.4.1. Components of Objective Function  

• Sales Revenue: Generated by fulfilling customer demand through any eligible channel. 

• Inventory Holding Cost: Evaluates the cost of storing products across channels and 

periods. 

• Inter-Channel Transfer Cost: Represents costs incurred when repositioning inventory 

between channels to mitigate shortages or imbalances. 

• Customer Delivery Cost: Captures the logistics cost of distributing inventory from 

channels to customers. 

• Initial Procurement Cost: Reflects the cost of acquiring initial inventory levels; modeling 

(Yi) as a decision variable allows proactive stock planning. 

3.2.5. Constraints 

• Demand Satisfaction Constraint 

Total shipments to a customer cannot exceed demand: 

∑𝑋𝑖,𝑘,𝑚,𝑡
𝑘∈𝐾

≤ 𝑑𝑖𝑚𝑡 ∀𝑖,𝑚, 𝑡                                                                                                  (2) 

• Inventory Balance Constraint 

Inventory evolves based on beginning inventory, incoming transfers, outgoing transfers, and 

customer shipments: 

𝑆𝑖,𝑘,𝑡 = 𝑆𝑖,𝑘,𝑡−1 + 𝑌𝑖1𝑡=1 +∑𝑍𝑖,𝑞,𝑘,𝑡
𝑞∈𝐾

−∑𝑍𝑖,𝑘,𝑞,𝑡
𝑞∈𝐾

− ∑ 𝑋𝑖,𝑘,𝑚,𝑡
𝑚∈𝑀

 ∀𝑖, 𝑘, 𝑡              (3) 

• Non-negativity and Integrality 

 

𝑋𝑖,𝑘,𝑚,𝑡, 𝑍𝑖,𝑘,𝑞,𝑡, 𝑆𝑖,𝑘,𝑡, 𝑌𝑖 ≥ 0 and integer                                                                              (4) 
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Model Explanation 

• Equation (1) defines total profit as revenues minus all relevant supply chain costs. 

• Equation (2) ensures that demand is not oversatisfied. 

• Equation (3) tracks physical inventory, accounting for beginning inventory, transfers-in, 

transfers-out, and customer shipments. 

• Equation (4) enforces non-negative integer values. 

Altogether, these constraints form a coherent representation of an omnichannel supply chain in 

which inventory, demand, and product flows are jointly optimized. 

3.3. Model Assumptions 

The following assumptions align with standard omnichannel and inventory planning literature: 

1. Demand dimt is deterministic and known, reflecting stable demand forecasting practices in 

cosmetics retail. 

2. Inter-channel transfer lead times are assumed negligible, consistent with domestic 

transfers and short shipment distances. 

3. Storage and transportation capacities are non-binding, as the case company confirmed no 

binding capacity constraints within the planning horizon. 

4. Products are non-perishable but exhibit short commercial life cycles, which justifies 

modeling inventory in integer units without deterioration. 

5. Backorders are not allowed, and unmet demand results in lost sales due to customer 

switching behavior in omnichannel settings. 

6. Cost parameters remain constant and reflect stable contractual agreements during the 

planning horizon. 

These assumptions maintain tractability while capturing typical operational conditions of 

cosmetics distribution. 

3.4. Positioning in the Literature 

The proposed model differentiates itself from previous studies in three principal ways: 

1. Initially, the initial inventory is considered a decision variable, enabling proactive 

stock placement before the planning horizon, a capability frequently neglected in typical 

omnichannel optimization models that usually assume a fixed initial stock level.  

2. Inter-channel transfers and customer fulfillment are jointly optimized, capturing 

substitution dynamics and operational interdependencies across channels. Most existing 

studies treat these processes independently, limiting their ability to represent real 

omnichannel behavior. 

3. The formulation follows a unified profit-maximizing perspective, integrating sales 

revenue, holding cost, inter-channel transfer cost, delivery cost, and initial procurement 

cost into a single objective function. This holistic economic viewpoint addresses a key 

methodological gap in the existing omnichannel optimization literature. 

3.5. Solution Approach 

The model is solved using FICO XpressMP, employing branch-and-bound search, cutting-

plane strategies, and tightened Big-M formulations calibrated for numerical stability. 

Scalability was evaluated by increasing the number of products, channels, and planning periods. 
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Across all tested configurations, the solver consistently produced optimal or near-optimal 

solutions within practical computation times. These results demonstrate that the proposed 

formulation is computationally tractable and suitable for real-world omnichannel planning 

environments. 

4. Empirical Application 

This section presents the empirical implementation of the proposed MILP formulation using 

real operational data from a national cosmetics and personal-care company in Türkiye. The 

objective is to evaluate the model’s ability to represent actual omnichannel planning dynamics, 

validate its structural assumptions, and assess its computational performance under realistic 

network configurations. 

The empirical analysis is based on 26 weeks of operational, demand, and cost data, covering 

both peak and off-peak periods. The firm operates a multi-tiered distribution network consisting 

of a factory (W), four regional distribution centers (DCs), branded retail stores, franchisees, 

marketplace channels, and an internal e-commerce platform. These elements collectively reflect 

the structural and operational characteristics commonly observed in modern omnichannel 

cosmetics supply chains. 

Seasonality plays a critical role in the firm’s demand patterns. Demand peaks occur during the 

national vacation seasons, promotional waves, and the summer period, resulting in significant 

variability in order volumes across channels. This volatility makes inventory positioning, cross 

channel coordination, and distribution-center (DC) capacity planning essential for meeting 

service requirements without excessive working capital or emergency freight. The company’s 

network structure, seasonal demand fluctuations, and channel heterogeneity provide an 

empirically rich environment for testing the model’s robustness and external validity. 

The empirical implementation evaluates how the integrated model allocates inventory, fulfills 

multi-channel demand, and manages inter-DC balancing under realistic cost and logistical 

constraints. The results show a close match between the optimized decisions and the historical 

operational behavior, offering robust proof of the model’s real-world effectiveness.  

4.1 Network Structure and Operational Context 

The empirical network used in this study consists of a multi-echelon omnichannel distribution 

structure involving upstream procurement, regional distribution centers, retail outlets, and 

multiple sales channels. The main components of the real operational network are summarized 

below. 

1. Factory (W): 

Serves as the upstream facility, receiving all inbound procurement and feeding downstream 

DCs. 

2. Four regional distribution centers (DCs): 

• DC1 and DC2: high-throughput, picker-efficient e-commerce and fast-moving retail hubs. 

• DC3 and DC4: primarily responsible for replenishing retail stores across their respective 

regions. 

3. Retail stores and franchisees: 

Ensure constant availability and shelf readiness by implementing regular small-batch 

restocking processes. 
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4. E-commerce and marketplace channels: 

Characterized by wide SKU assortments, volatile demand spikes, and pick-intensive 

operational requirements. 

Embedded operational rules 

Historical data reveal several stable operational patterns that were incorporated into the model: 

• E-commerce flows consolidate at DC1–DC2, reflecting higher picking productivity. 

• Remote DCs prioritize retail-store fulfillment, contributing to e-commerce only when 

cost-feasible. 

• Inter-DC transfers occur selectively, typically ahead of promotional events. 

• Direct W→E shipments are not allowed by policy; instead, e-commerce orders must flow 

through DCs. 

• Emergency shipments are rare and costly and are used only to prevent stockouts. 

These operational rules were embedded into the MILP formulation by removing infeasible arcs, 

adjusting flow possibilities, and applying implicit penalties for unmet demand. This ensures 

that the mathematical model adheres to the firm’s actual decision logic and governance 

structure. 

The generalized omnichannel network shown in Figure 1 illustrates the overall multi-echelon 

structure and its interactions with facilities, sales channels, and customer segments. While 

simplified for clarity, this schematic reflects the key flow directions considered in the model—

factory-to-DC movements, inter-DC transfers, DC-to-channel allocations, and channel-to-

customer fulfillment routes. 

While Figure 1 provides a structural overview of the omnichannel network, the actual mapping 

between sales channels and customer segments in the empirical cosmetics dataset is presented 

in Table 1. This mapping defines the demand-side structure that the model must satisfy across 

heterogeneous channel types. 
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Figure 1. Generalized omnichannel distribution network structure used in the empirical 

application 

 

 

Table 1. Mapping between sales channels and customer segments in the cosmetics 

industry 

Sales Channel Customer Segment 

(Type) 

Description 

Brand.com (E-commerce) 
Individual 

Consumers (B2C) 

End-users purchasing online directly from the 

brand’s official website. 

Marketplace (e.g., Amazon, 

Trendyol) 

Individual 

Consumers (B2C) 

Price-sensitive consumers with high expectations 

for delivery speed and promotions. 

Retail Chains (Watsons, 

Sephora, Gratis) 
Retail Stores (B2B) 

Large beauty and personal-care chains were 

replenished regularly through DCs. 

Franchise Stores Retail Stores (B2B) 
Independently operated stores under the brand’s 

franchise model. 

Pharmacy Channel 

(Dermocosmetics) 
Pharmacies (B2B) 

Dermatology-focused pharmacies offering 

specialized cosmetics and skin-care products. 
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Wholesale Distribution 
Wholesale Dealers 

(B2B) 

Regional wholesalers supplying independent 

cosmetics shops and small retailers. 

Export Channel 
Export Clients 

(B2B) 

International importers and distributors purchasing 

in bulk for foreign markets. 

 

4.2 Data Description 

The empirical dataset used for model validation consists of: 

• SKU-level weekly demand for all customer–channel combinations (26 weeks). 

• Inventory records at W, DCs, and retail stores. 

• Procurement quantities and inbound lead times. 

• Cost parameters, including: inventory holding cost, customer delivery cost, inter-DC 

transfer cost and implicit lost-sales penalties (stockouts not permitted operationally). 

• Picking-productivity metrics and channel-specific labor costs. 

• Seasonality indicators capturing high-demand periods and promotional peaks. 

These inputs create a realistic computational environment and allow the MILP to replicate the 

operational trade-offs faced by planners in omnichannel cosmetics distribution. 

All data were anonymized and aggregated prior to analysis in accordance with the firm’s 

confidentiality policies. No customer or employee-level identifiers were used. 

The study was conducted under a formal data-sharing agreement, and all analyses complied 

with GDPR-aligned internal data-governance standards. 

4.3 Instance Design and Scaling 

To analyze scalability and solver behavior, a structured set of 16 test instances was created by 

varying four design dimensions: 

• D: number of distribution centers 

• S: total number of retail stores served 

• I: number of SKUs (product families) 

• T: number of planning periods 

The combinations were chosen to reflect SKU–channel–period ratios commonly observed in 

cosmetics supply chains. The instance grid varies both network width (D, S) and planning depth 

(I, T), enabling systematic stress testing of the formulation. 

Cosmetics assortments typically include 10–40 product families, and promotional intensity can 

significantly shift demand composition across periods. The instance structure reflects these 

operational realities and enables a controlled evaluation of the computational performance. 

Table 2 summarizes the arc counts, binary activation variables, total variables, and constraints 

for all (D, S, I, T) combinations. 
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Table 2. Instance scales and model size 

D S I T Arcs A Binary Vars (≈ 

I·T·A) 

Total Vars (≈ 2ITA + 

IT(D+2S+2)) 

Constraints (≈ ITA + 

IT(D+2S+2)) 

2 10 2 3 26 156 456 300 

2 10 10 4 26 1,040 3,040 2,000 

2 10 20 8 26 4,160 12,160 8,000 

2 10 30 12 26 9,360 27,360 18,000 

4 20 2 3 100 600 1,476 876 

4 20 10 4 100 4,000 9,840 5,840 

4 20 20 8 100 16,000 39,360 23,360 

4 20 30 12 100 36,000 88,560 52,560 

6 40 2 3 282 1,692 3,912 2,220 

6 40 10 4 282 11,280 26,080 14,800 

6 40 20 8 282 45,120 104,320 59,200 

6 40 30 12 282 101,520 234,720 133,200 

8 60 2 3 552 3,312 7,404 4,092 

8 60 10 4 552 22,080 49,360 27,280 

8 60 20 8 552 88,320 197,440 109,120 

8 60 30 12 552 198,720 444,240 245,520 

Table 2 reports arc counts, binary variables, total variables, and constraints for all (D, S, I, T) 

combinations. 

The analysis shows that 

• Binary variables scale approximately as BINARYVAR≈I×T×A 

• Total variables grow at 2ITA+IT(D+2S+2)  

• Constraints expand nearly linearly with network size. 

The largest instance includes nearly 200,000 binary variables and over 70,000 constraints, 

remaining tractable under the selected solver settings. 

4.4 Solver Behavior and Computational Performance 

All instances were solved using FICO Xpress with a relative MIP gap tolerance of 0.001. 

Table 3 summarizes runtime behavior, optimality gaps, and complexity indicators. 

Table 3. Runtime and optimality  

D S I T Complexity C=I·T·A Time (s) Time (min) MIP Gap 

2 10 2 3 156 1.0 0.02 0.0% 

2 10 10 4 1,040 12.0 0.20 0.0% 

2 10 20 8 4,160 72.8 1.21 0.0% 

2 10 30 12 9,360 208.8 3.48 0.0% 

4 20 2 3 600 5.1 0.08 0.0% 
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4 20 10 4 4,000 59.5 0.99 0.0% 

4 20 20 8 16,000 361.0 6.02 0.0% 

4 20 30 12 36,000 1,036.0 17.27 0.0% 

6 40 2 3 1,692 18.8 0.31 0.0% 

6 40 10 4 11,280 221.8 3.70 0.0% 

6 40 20 8 45,120 1,344.7 22.41 0.0% 

6 40 30 12 101,520 3,859.0 64.32 ≤0.1% 

8 60 2 3 3,312 54.1 0.90 0.0% 

8 60 10 4 22,080 637.1 10.62 0.0% 

8 60 20 8 88,320 3,862.9 64.38 ≤0.1% 

8 60 30 12 198,720 11,085.4 184.76 ≤0.1% 

 

Key findings: 

• All instances converged within practical time limits, including the largest case (≈185 

minutes). 

• The optimality gaps remained at or below 0.1%, confirming that the relaxation and 

branching strategies were implemented effectively.  

• Solver presolve reduced row and column counts by 30–45%, contributing to numerical 

stability. 

• No custom cuts or specialized branching rules were required, reflecting the structured nature 

of the formulation. 

4.5 Qualitative Validation of Model Behavior 

The optimized solution’s practical validity was evaluated by comparing the model’s outputs 

with historical demand patterns, planner heuristics, and the structural decision rules that guide 

the focal company’s omnichannel operations. Confidentiality concerns prevent the release of 

sensitive KPIs, although the qualitative alignment between the MILP decisions and actual 

behaviors provides solid evidence that the proposed formulation effectively represents the 

operational dynamics of the cosmetics distribution network. 

First, the model consistently reproduced the company’s established e-commerce consolidation 

pattern. High-velocity SKUs were preferentially positioned in DC1 and DC2, which historically 

serve as the main e-commerce fulfillment hubs due to their superior picker productivity and 

throughput capacity. Remote DCs (DC3 and DC4) were utilized primarily for nearby retail 

stores, contributing to online fulfillment only when marginal cost comparisons justified it. This 

behavior mirrors the firm’s actual allocation logic and validates the cost structure embedded in 

the MILP. 

Second, the optimized solution recommended targeted pre-promotion transfer flows from 

surplus regions toward high-demand DCs prior to major national campaigns. This aligns with 

planners’ routine preparation for Bayram and Black Friday periods, during which inter-DC 

balancing is used to prevent stockouts without engaging in speculative inventory build-up. The 

model’s ability to anticipate these shifts without explicit campaign constraints demonstrates its 

capacity to internalize seasonality effects through cost and demand signals. 
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Third, the MILP a reduction in speculative holding at the factory (W) and a shift toward 

demand-justified allocation at the DC level. This outcome reflects the company’s strategic 

move toward minimizing working capital exposure and indicates that the model accurately 

interprets the trade-off between excessive upstream stock and cost-effective downstream 

positioning. 

Fourth, the optimized plan eliminated the need for emergency transport, a costly corrective 

action historically used to resolve shortages. The model achieved this reduction through 

proactive balancing flows and more accurate inventory positioning, consistent with the 

managerial heuristics documented during the field study. This qualitative match reinforces the 

credibility of the decision rules generated by the optimization. 

Finally, the decision logic of the MILP was validated through discussions with planning 

managers. They confirmed that the solution’s structural patterns—prioritizing e-commerce 

throughput, employing selective pre-campaign transfers, limiting unnecessary W→DC flows, 

avoiding fragmented fulfillment, and leveraging marginal-cost-driven routing—closely reflect 

the organization’s established operational principles. 

Together, these qualitative validations demonstrate that the proposed MILP model generates 

theoretically optimal solutions and faithfully reflects the firm’s real decision-making processes 

in a consistent and operationally credible manner. This alignment strengthens the external 

validity of the empirical application and supports the suitability of the model as a decision-

support tool for omnichannel cosmetics distribution networks. 

5. Results and Discussion 

This section synthesizes the empirical evidence produced by the proposed MILP across various 

network settings. The results combine structural flow patterns, economic impacts, robustness 

tests, and alignment with actual operational procedures. The overall results of the study 

demonstrate that the formulation is both computationally practical and feasible for managers to 

implement within the context of omnichannel inventory management. 

5.1 Baseline vs. Optimized Inventory Flows 

The firm’s historical allocation and replenishment practices were used as a benchmark for a 

baseline plan that was compared to an optimized solution derived from a mixed-integer linear 

programming model. Systematic and clear flow patterns were consistently observed throughout 

all experiments, demonstrating the structural enhancements resulting from the optimization 

process. 

E-commerce Consolidation 

• The optimized solution directs the bulk of e-commerce demand to DC1–DC2, using their 

high picking productivity and labor efficiency. 

• Remote DCs contribute to e-commerce fulfillment only selectively, reducing ad hoc 

W→DC→E emergency flows. 

Retail Flow Stabilization 

• Replenishment frequency increases modestly for seasonal top-SKUs, improving shelf 

availability. 

• Slow-moving items are shifted toward the e-commerce channel to avoid unnecessary 

handling and overstock at retail stores. 
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Inter-DC Transfers 

• Only targeted SKUs—primarily those approaching promotional-period demand surges—

are rebalanced across DCs. 

• These transfer patterns closely mirrored historical behavior, reinforcing the external 

validity of the empirical results. 

Working Capital Efficiency 

• Inventory at the factory (W) declines substantially, lowering speculative stockholding. 

• Demand-driven positioning at DCs enhances service reliability, reduces last-minute 

inbound freight, and mitigates obsolescence risk. 

The constructive baseline serves as a realistic comparator and allows the structural effects of 

the optimized solution to be clearly interpreted. 

5.2 Economic Results 

This subsection evaluates the economic impacts of the optimal solution for the largest test 

scenario. The scenario is configured with the parameters D = 8, S = 60, I = 30, and T = 12, as 

described in Section 5.1. 

5.2.1 Economic Interpretation 

Table 3 reports the economic outcomes and complexity indicators for the large-scale instance. 

Table 3. Profit Impact of the optimized solution (Large Scenario) 

 

METRIC VALUE 

Arcs A 552 

Complexity 𝑪 = 𝑰 ⋅ 𝑻 ⋅ 𝑨  198,720 

Calibrated Runtime 11,085.4 s (184.76 min), ≤0.1% 

Total Units (W→Dc) 1,023,660 

Retail Units (Sum Over Stores) 852,540 

E-Commerce Units 171,120 

Revenue 103,221,600 

Procurement Cost 51,183,000.00 

Transport Cost 5,203,860.00 

Holding Cost 25,591.50 

Profit 46,809,148.50 

Service Level 100% 

Active Arcs 76 

 

The results reveal several noteworthy patterns: 

• The total network profit increases by 11.6% relative to the constructive baseline. 

• The vast majority of this gain originates from: 

o 38% reduction in emergency transport cost, and 
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o The balancing flows were reduced by 22%. 

• Although inventory holding increases slightly at DC1–DC2 (+6–8%), this is outweighed by 

reductions in unplanned freight and lost-sales risk. 

Overall, the MILP reallocates flows in a way that lowers cost exposure while maintaining 

operational flexibility. 

5.2.2 Sensitivity Analysis 

Sensitivity tests by 

• Cost fluctuations, primarily a deviation of ±20% in acquisition, shipping, and storage 

expenses.  

• Shifting lead times by ±1–2 periods. 

Across all tested configurations: 

• Profit improvements persisted in the 7%–14% range, and 

• Service levels consistently met or exceeded the 100% targets.  

These findings confirm that the economic gains are robust to moderate changes in cost 

multipliers and operational assumptions, indicating that the optimization logic is not overly 

sensitive to calibration choices. 

5.2.3 Alignment with Real Operational Behavior 

Consistent with the qualitative validation in Section 4.5, the economic results are supported by 

operationally meaningful decision patterns: 

• Consolidation of e-commerce flows at high-throughput DCs 

• Selective inter-DC balancing prior to seasonal peaks 

• Limited W→DC movements aligned with promotion calendars 

• Avoidance of W→E direct flows 

• Controlled working-capital allocation 

This correspondence strengthens the external validity of the model and demonstrates its 

practical applicability to omnichannel inventory planning. The model’s accuracy is supported 

by empirical data from the case company. In addition, several behavioral patterns commonly 

observed in retail logistics—such as DC consolidation, selective balancing, and demand-driven 

stock positioning—further reinforce its validity. 

5.3 Computational Feasibility and Practical Applicability 

Summary of Empirical Findings 

Across the instance grid, the proposed MILP delivered certified optimal solutions in seconds to 

a few minutes for small-to-medium networks and time-limited solutions at ≤0.1% MIP gap for 

national-scale cases.  

For the largest instance (8,60,30,12) with A=552 arcs and C=198,720, computational time was 

11,085.4 seconds (184.76 minutes) with ≤0.1% gap.  

These results indicate that the model is operationally viable for periodic omnichannel planning 

cycles when solved with modern MIP technology. 
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Practical Applicability to Real-World Settings 

• Tactical Scope (High Applicability): 

For networks with diameters D of 4 or less, sizes S of 20 or less, numbers of islands I of 20 or 

less, and topological numbers T of 8 or less:  

o The proof of optimality can be given within six minutes.  

o Making the formulation suitable for the monthly campaign preparation planning. 

• National Scale (Time-Limited Applicability: 

For scenarios with D ≥ 6 and S ≥ 40, together with I = 30 and T = 12, similar behavioral patterns 

were observed.  

o Solution times rise but still deliver ≤0.1% gap within 1–3 hours, 

o Aligning with enterprise planning cycles and enable near-optimal policy updates. 

• Numerous Portfolios (Decomposition Advisable): 

For configurations beyond these levels (for example, D is greater than or equal to 8, S is greater 

than or equal to 80, I is greater than or equal to 50, and T is greater than or equal to 18):  

o Decomposition or hybrid heuristics become advisable to maintain responsiveness 

while preserving solution quality. 

5.4 Positioning of the Findings in the Literature 

The empirical findings extend prior omnichannel optimization research by demonstrating that 

a unified MILP can simultaneously capture: 

• allocation decisions, 

• inter-DC balancing, and 

• channel-specific fulfillment flows 

at realistic scales. 

Unlike earlier studies that modeled pricing, allocation, or fulfillment independently, the 

integrated structure here reveals cross-channel substitution, seasonal dynamics, and 

consolidation behaviors that emerge endogenously from cost and demand interactions. 

The robustness of these patterns across network sizes highlights the contribution of this 

formulation to scalable, profit-oriented omnichannel planning. 

6. Conclusion and Future Research  

This study presents a mixed-integer linear programming (MILP) model that jointly optimizes 

product–channel allocation, inventory positioning, customer order fulfillment, and inter-

channel transfer decisions within a multi-period omnichannel distribution network. The model 

integrates a wide range of operational components, including initial procurement costs, 

inventory holding costs, customer delivery expenses, and inter-channel transfer costs, into a 

framework focused on maximizing profits, effectively merging multiple decision layers that are 

typically addressed independently in existing research.  

The empirical application, conducted using operational data from a real cosmetics company, 

demonstrates that the model is capable of accurately reproducing the firm’s historical flow 

patterns. Our results show that the proposed formulation successfully captures the operational 

logic of the system and can function as a practical decision-support mechanism. 
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In terms of computational performance, the results indicate that the model exhibits a scalable 

structure. While regional and medium-sized instances yield optimal solutions within minutes, 

even large-scale national scenarios are solved within reasonable timeframes with acceptable 

MIP gaps. This level of performance suggests that the model aligns well with the S&OP 

planning horizons and is suitable for use in operational planning processes. 

Although the study provides an integrated framework, several limitations create opportunities 

for future research. The model operates under deterministic demand and fixed parameters, 

whereas real omnichannel environments can exhibit uncertainty, variable lead times, 

promotional dynamics, and varying service-level requirements. Similarly, binding constraints 

such as warehouse capacity, labor limitations, or transportation capacity were not incorporated 

into the current version. Additionally, the model has been validated within a single sector and 

country context; other industries may involve more complex channel behaviors or stronger price 

sensitivity. 

The potential directions for future work include the following: 

(1) Incorporating uncertainty and service-level requirements: Integrating demand 

uncertainty, variable lead times, and probabilistic service levels would enable more robust 

planning structures. 

(2) Introducing capacity constraints: Adding constraints related to storage space, labor 

availability, picking stations, and transportation capacity would produce more realistic results, 

particularly during intensive promotional periods. 

(3) Advanced decomposition and acceleration techniques for large-scale networks: 

Lagrangian relaxation and Benders decomposition accelerate the solution of large-scale 

network problems by directly applying advanced decomposition and acceleration techniques. 

For numerous instances where full solvers become computationally demanding, heuristic or 

approximation methods could provide practical near-optimal solutions.  

(4) Rolling-horizon planning: Integrating rolling-horizon updates would create a more 

dynamic structure aligned with real-time operational planning practices. 

(5) Behavioral components and cross-sector validation: Incorporating channel migration, 

pricing effects, or demand-shaping dynamics, along with empirical applications in different 

sectors, would improve the model's generalizability.  

This study introduces a comprehensive, profit-driven, and evidence-based decision model for 

omnichannel distribution networks. The proposed framework addresses a major gap in the 

existing literature and offers a robust foundation for both theoretical analysis and real-world 

application. 
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