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ABSTRACT

The rapid acceleration of digitalization, the widespread adoption of mobile technology, and shifting consumer
purchasing patterns have elevated the strategic importance of omnichannel frameworks within retail supply chain
networks. The convergence of physical stores, online platforms, mobile applications, and marketplaces has
resulted in heightened customer expectations for smooth interactions across all touchpoints. Inventory allocation,
order fulfillment, inter-channel transfers, and delivery decisions are then expressed as a multidimensional planning
problem. In the cosmetics industry, effective decision-making relies on a carefully planned inventory placement
strategy that incorporates multiple distribution channels, directing customer demand to the most suitable channel
and controlling goods movement quantities between channels to achieve efficient operations and the highest
possible profitability. This study proposes a novel mixed-integer linear programming (MILP) model designed to
maximize the total profit within an omnichannel distribution network. The model combines sales revenue,
inventory costs, transportation and transfer expenses, and initial procurement costs to guide product distribution
across channels. By integrating these elements, it provides a unified framework for determining shipments between
channels and setting initial stock levels. The model was evaluated on a genuine cosmetics dataset via FICO Xpress,
with its solution quality, computational efficiency, and scenario-based sensitivity assessed across diverse product,
channel, and time configurations. The study’s findings indicate that the proposed model not only bridges the
existing gap in multi-channel decision-making research but also provides a practical decision-support tool for
managing multi-channel logistics networks. Furthermore, the model has strong potential to be enhanced through
heuristic or metaheuristic extensions, enabling even higher performance for large-scale problem instances.
Keywords: Omnichannel distribution, Inventory optimization, Multi-period planning, Mixed-integer linear
programming

JEL Clasifications: C61, L81, M11, M21

Biitiinciil Kanallh Envanter Optimizasyonu icin Yeni Bir Karma Tamsayili
Dogrusal Programlama Modeli: Ampirik Bir Uygulamat

OZET

Dijitallesmenin hizli ivmelenmesi, mobil teknolojilerin yaygin bi¢cimde benimsenmesi ve tiiketici satin alma
davranislarindaki degisim, perakende tedarik zinciri aglari igerisinde biitiinciil kanall1 yapilarin stratejik 6nemini
artirmistir. Fiziksel magazalar, ¢cevrimigi platformlar, mobil uygulamalar ve pazar yerlerinin birbirine yaklagmasi,
tiim temas noktalarinda kesintisiz ve biitiinlesik etkilesim beklentilerini beraberinde getirmistir. Bu baglamda,
envanter tahsisi, siparis karsilama, kanallar aras1 transferler ve teslimat kararlar1 ¢ok boyutlu bir planlama problemi
olarak ele alinmaktadir. Kozmetik sektoriinde etkin karar verme siireci; birden fazla dagitim kanalini igeren,

'This article is based on the Zeynep Ornek’s PhD dissertation (A Model For A Meta-Heuristic Framework For A
Machine Learning-Focused Approach Omnichannel Supply Chain) conducted at Istanbul University Cerrahpasa
under the supervision of Assoc. Prof. Dr. Ersin Naml1.
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miisteri talebini en uygun kanala yonlendiren ve kanallar arasindaki iiriin hareket miktarlarii kontrol ederek
operasyonel verimliligi ve karliligr en ist diizeye ¢ikarmayir amaglayan dikkatle tasarlanmig bir envanter
konumlandirma stratejisine dayanmaktadir. Bu ¢aligma, biitiinciil kanalli bir dagitim ag1 igerisinde toplam kari
maksimize etmeyi amaglayan yeni bir karma tamsayili dogrusal programlama (MILP) modeli 6nermektedir.
Model; satis gelirleri, stok bulundurma maliyetleri, tasima ve transfer giderleri ile baslangi¢ tedarik maliyetlerini
biitiinlesik bir yap1 altinda ele alarak iiriinlerin kanallar arasindaki dagitimmi yonlendirmektedir. Bu unsurlarin
entegrasyonu sayesinde, kanallar arasi sevkiyat kararlar1 ile baslangic stok seviyelerinin belirlenmesine yonelik
birlesik bir karar destek ¢ercevesi sunulmaktadir. Model, gercek bir kozmetik sektorii veri seti kullanilarak FICO
Xpress ortaminda test edilmis; ¢coziim kalitesi, hesaplama etkinligi ve senaryo bazli duyarlilik analizleri farkli {irtin,
kanal ve zaman yapilandirmalar altinda degerlendirilmistir. Elde edilen bulgular, 6nerilen modelin ¢ok kanall1
karar verme literatiiriindeki mevcut boslugu doldurmakla kalmayip, ayn1 zamanda ¢ok kanalli lojistik aglarin
yonetiminde uygulanabilir bir karar destek aract sundugunu gostermektedir. Ayrica modelin, biiyiik 6lcekli
problem 6rneklerinde daha yiiksek performans elde edilebilmesi amaciyla sezgisel veya meta-sezgisel yaklagimlar
ile gelistirilmeye uygun giiglii bir potansiyele sahip oldugu degerlendirilmektedir.

Anahtar Kelimeler: Biitiinciil kanalli dagitim, Envanter optimizasyonu, Gok dénemli planlama, Karma tamsayili

dogrusal programlama
Jel Stmflamasi: C61, L81, M11, M21

1. Introduction

The retail sector has been significantly affected by digital technology, primarily driven by rapid

technological advancements, an expansion of several sales channels, and increasing customer
demand for seamless interactions across multiple touchpoints. Rapid progress in these areas has
resulted in quicker rollout of omnichannel frameworks. In 2013, Brynjolfsson, Hu, and Rahman
discovered that consumers aim for a hassle-free interaction at every touchpoint. Bell, Gallino,
and Moreno (2014) noted that combining online and offline operations is crucial for attaining
both customer satisfaction and logistical effectiveness. As Shankar et al. (2022) noted, a
successful omnichannel transformation necessitates a fundamental organizational framework
that encompasses a complete overhaul of sales channels, demand management methods,
inventory placement, and operational procedures.

The cosmetics industry is subject to considerable pressure stemming from short product
lifecycles, extensive product assortments, and pronounced demand fluctuations during seasonal
and promotional periods. The interplay of these factors underscores the necessity for expedited
delivery and a highly responsive logistics network. Melacini et al. (2018), along with Hubner,
Holzapfel, and Kuhn (2016), stressed the significance of keeping precise inventory records,
creating effective distribution systems, and guaranteeing on-time product deliveries. The
requirements are particularly crucial in the cosmetics and personal care sectors, where product
ranges often exhibit significant complexity. Assigning customer orders to fulfillment nodes,
managing inter-channel transfer flows, setting initial inventory levels, and positioning products
across warehouses and channels are interconnected components of a multidimensional
optimization problem involving multiple decision layers.

While there is a substantial amount of existing research on multichannel and omnichannel
supply chain planning, most recent models mainly focus on reducing costs (Agatz et al., 2008;
Lietal., 2021). In most modeling studies, channel switching is treated as a fixed parameter and
the initial inventory levels are assumed to be constant. Only a small subset of existing studies
incorporates sales revenues directly into the objective function (Zhang et al., 2024; Lu et al.,
2023; Chen et al., 2023; Choudhury & Venkatesh, 2022). Although these studies provide
meaningful insights, there remains a clear need for more integrated decision-making models,
especially in high-variety and high-velocity omnichannel settings.

A review of the literature reveals 4 critical gaps:
e The scarcity of models that treat initial inventory levels as decision variables,
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e The lack of integrated approaches that jointly optimize inter-channel transfers and
channel—customer fulfillment,

e The limited incorporation of profit maximization within multi-period planning
structures,

o The absence of empirically validated decision models tested on real-world data.

This study addresses existing knowledge gaps by introducing a comprehensive framework built
around a mixed-integer linear programming (MILP) model. The framework covers product—
channel allocation, channel—customer order fulfillment, inter-channel transfer flows, and the
determination of the initial inventory levels. The model adopts a profit-oriented structure by
jointly optimizing sales revenues alongside holding, transfer, transportation, and initial
procurement costs. The model is evaluated using a real dataset from a cosmetics company,
demonstrating that the proposed method is both theoretically valid and practically useful as a
decision-support system.

The key contributions of this study can be summarized as follows:

(1) Introducing an applied profit maximization model in which the initial inventory levels are
optimized as decision variables;

(2) Developing one of the few integrated models that jointly optimizes inter-channel transfers
and channel—customer fulfillment within a single formulation;

(3) Validating the model on a real-world omnichannel cosmetics distribution network, thereby
demonstrating both theoretical and practical external validity.

2. Literature Review

Omnichannel retailing establishes a distribution system that allows consumers to move
seamlessly across physical stores, e-commerce platforms, mobile applications, and online
marketplaces. This structure requires a high degree of integration and coordination
(Brynjolfsson et al., 2013; Bell et al., 2014; Shankar et al., 2022). This transformation reshapes
not only sales channels but also operational decision structures that influence inventory
visibility, logistics processes, channel integration, and the overall customer experience. A
review of omnichannel operations by Almeida et al. in 2020 noted that channel integration has
a considerable impact on logistics efficiency, service levels, and inventory accuracy. Studies by
Hibner et al. in 2016 demonstrated that omnichannel systems are complex to operate due to the
numerous customer touchpoints.

Previous research has laid a strong foundation for supply chain and network design.
Contributions have been substantial in identifying optimal locations for distribution centers,
determining suitable capacity levels, and synchronizing operations across different channel
configurations, as noted by Croxton et al. (2002), van der Vorst & Beulens (2002), and Simchi-
Levi et al. (2008). In contrast to traditional multichannel structures, omnichannel networks
involve stronger inter-channel interactions and more heterogeneous customer behavior. Gallino
and Moreno (2014) investigated the operational implications of jointly managing physical and
digital channels, whereas Melacini et al. (2018) argued that visibility, delivery speed, and
flexibility requirements necessitate a redesign of logistics processes in omnichannel
environments. From this perspective, Guerrero-Lorente et al. (2020) developed network design
models that consider channel preferences, and Millstein (2022) demonstrated the direct effect
of warehouse placement and capacity choices on profitability. Vazquez-Noguerol et al. (2022)
conducted an applied examination of e-fulfillment models that jointly consider storage, picking,
and delivery processes in supermarket networks.
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Inventory optimization research focuses on inventory positioning, safety stock, and the
coordination of inventory flows in multi-echelon distribution systems under uncertainty.
Foundational studies—including Raman and Fisher (1992), Tang (2006), and Cachon and
Terwiesch (2009)—highlight the financial consequences of inventory decisions. Building on
this work, Srinivasan and Kesavan (2011) showed that inventory efficiency is closely linked to
financial performance in retail chains. For multi-echelon systems, Simchi-Levi et al. (2008) and
Feng and Hu (2022) emphasized the need for an integrated consideration of inventory
placement and flow coordination. Wang and Hu (2019) showed that jointly optimizing
warehouse assignment and inventory levels improves system efficiency, and Goswami and
Chauhan (2021) addressed product allocation in multichannel structures within an optimization
framework.

Fulfillment research, particularly in the context of online demand, examines the cost and
service-level implications of fulfilling orders from either warehouses or stores. Agatz et al.
(2008) classify the cost components of e-fulfillment strategies in multichannel distribution
networks, while Liu et al. (2020) present an integrated framework that optimizes inventory
levels and delivery costs. Li et al. (2021) explored how warehouses and stores interact within
hybrid fulfillment structures. In related work, Chen et al. (2023) and Choudhury and Venkatesh
(2022) investigated strategies for optimizing multi-period demand, inventory levels, and
service-level trade-offs. The operational importance of inter-channel transfers is further
highlighted in studies by Gong and Liu (2018), Zhang and He (2022), and Lu et al. (2023).

The assortment planning literature also plays a meaningful role in omnichannel contexts,
analyzing how channel behavior influences demand. Hense and Hubner (2022) proposed
channel-based assortment optimization, while Lo et al. (2022) modeled the effects of customer
channel preferences on product choice. Vasilyev et al. (2025) showed that jointly optimizing
assortment and inventory levels significantly enhances profitability.

Profit-maximization-oriented models remain relatively limited in the literature. Caro and
Gallien (2010) investigated the relationship between competition, inventory, and revenues,
whereas Harsha et al. (2016, 2017) analyzed the integrated nature of pricing and fulfillment
decisions under omnichannel settings. Pichka et al. (2022) explained the interaction between
pricing and fulfillment in multichannel environments. Saghafian (2022) and Zhou et al. (2021)
studied channel migration and cross-channel fulfillment dynamics, while Zhang et al. (2024)
modeled the revenue impact of channel-based price differentiation. Qiu et al. (2021, 2025)
developed integrated models that jointly consider pricing, ordering, replenishment, and capacity
sharing.

Methods based on simulation are widely used to investigate uncertainty, such as stockout risk,
demand variability, and operational performance, as seen by Rai et al. (2021). Tools grounded
in data and analytical modeling are increasingly used to analyze supply chain behavior, enhance
demand forecasting, and strengthen customer segmentation initiatives. This trend is well
documented in recent studies by Almeida et al. (2020), Gupta and Ivanov (2020), and Melacini
et al. (2018).

In summary, despite the growing body of research, only a limited number of studies integrate
inter-channel transfers and channel-customer fulfillment, treat initial inventory levels as
decision variables, incorporate multi-period structures, and jointly optimize all logistics cost
and revenue components within a profit-maximization framework. Addressing this gap, the
present study offers an integrated and profit-oriented optimization model, tested on real data
from the cosmetics sector, thereby contributing to the literature both methodologically and
practically.
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3. Model Formulation and Solution Approach
3.1. Model Overview

The proposed mixed-integer linear programming (MILP) model optimizes inventory
positioning, customer fulfillment, inter-channel transfers, and initial procurement decisions
within a multi-period omnichannel distribution network. The joint formulation determines
inventory levels for each channel and period, allocates customer demand, identifies inter-
channel transfer quantities and directions, and defines the initial stock procurement for the
planning horizon.

In contrast to traditional multi-channel formulations that address inventory placement,
fulfillment, and redistribution as separate subsystems, the proposed model integrates these
decisions through a unified profit-maximizing structure that reflects the operational
characteristics of omnichannel cosmetics distribution—high product variety, short life cycles,
heterogeneous channels, and rapidly changing customer expectations. Modeling the initial
inventory as a decision variable further enhances strategic flexibility by enabling proactive
stock positioning before the first period.

3.2. Mathematical Model

The mathematical formulation follows the standard notation used in the multi-period
distribution network optimization.

3.2.1. Sets and Indices

i€l : Products (SKU-level items in the assortment)
meM : Customers (demand points / sales destinations)
k,geK : Sales channels where k = 0 represents the factory
teT : Time periods (planning horizon)

3.2.2. Decision Variables

Xi, k,m,t - Quantity shipped from channel k to customer m (fulfillment decision).

Z;, k,q,t - Quantity transferred from channel k to channel g (redistribution decision).

Si, Kkt : Inventory level of product i at channel k (end-of-period stock).

Yi . Initial procurement quantity of product i (beginning inventory decision
variable).

3.2.3. Parameters

Pim  : Unit selling price of product i for customer m.
h; : The holding cost associated with product i.
Uig  : Inter-channel transfer cost of product i from channel k to channel g.

Vikm - Delivery cost of product i from channel k to customer m.
Ci - Initial procurement cost of product i.
dim¢ : Demand for product i by customer m in period t.



92

A New Mixed-Integer Linear Programming Model for Omnichannel Inventory
Optimization with an Empirical Application

w

3.2.4. Objective Function

The objective is to maximize total profit, defined as total sales revenue minus the sum of
inventory holding, inter-channel transfer, customer delivery, and initial procurement costs:

max Il = Z Z z z PimXikme — Z z 2 hiSike — 2 2 2 z UikgZik,q,t

i€El mMEM keK teT i€l KEK teT i€l kEK qEK teT
Sales Revenue Inventory Holding Cost Inter-Channel Transfer Cost

- Z z z z VikemXikm,t — Z c;Y; (D

i€l kEK meM teT i€l
Customer Delivery Cost Initial Procurement Cost

This formulation captures all major financial components in omnichannel operations and
provides a comprehensive economic representation of inventory, fulfillment, and transfer
decisions.

3.2.4.1. Components of Objective Function

Sales Revenue: Generated by fulfilling customer demand through any eligible channel.

Inventory Holding Cost: Evaluates the cost of storing products across channels and
periods.

Inter-Channel Transfer Cost: Represents costs incurred when repositioning inventory
between channels to mitigate shortages or imbalances.

Customer Delivery Cost: Captures the logistics cost of distributing inventory from
channels to customers.

Initial Procurement Cost: Reflects the cost of acquiring initial inventory levels; modeling
(i) as a decision variable allows proactive stock planning.

3.2.5. Constraints

Demand Satisfaction Constraint

Total shipments to a customer cannot exceed demand:

z Xi,k,m,t S dimt Vl, m, t (2)

k€K

Inventory Balance Constraint

Inventory evolves based on beginning inventory, incoming transfers, outgoing transfers, and
customer shipments:

Sikt = Sike—1 Tt Yir,., T+ Z Zigkt — Z Zikagt — Z Xikme Vikt (3)

qEK qEK meM

Non-negativity and Integrality

Xikmtr Zikgt Sike Yi = 0 and integer (€))
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Model Explanation
« Equation (1) defines total profit as revenues minus all relevant supply chain costs.
o Equation (2) ensures that demand is not oversatisfied.

« Equation (3) tracks physical inventory, accounting for beginning inventory, transfers-in,
transfers-out, and customer shipments.

« Equation (4) enforces non-negative integer values.

Altogether, these constraints form a coherent representation of an omnichannel supply chain in
which inventory, demand, and product flows are jointly optimized.

3.3. Model Assumptions
The following assumptions align with standard omnichannel and inventory planning literature:

1. Demand dimt is deterministic and known, reflecting stable demand forecasting practices in
cosmetics retail.

2. Inter-channel transfer lead times are assumed negligible, consistent with domestic
transfers and short shipment distances.

3. Storage and transportation capacities are non-binding, as the case company confirmed no
binding capacity constraints within the planning horizon.

4. Products are non-perishable but exhibit short commercial life cycles, which justifies
modeling inventory in integer units without deterioration.

5. Backorders are not allowed, and unmet demand results in lost sales due to customer
switching behavior in omnichannel settings.

6. Cost parameters remain constant and reflect stable contractual agreements during the
planning horizon.

These assumptions maintain tractability while capturing typical operational conditions of
cosmetics distribution.

3.4. Positioning in the Literature
The proposed model differentiates itself from previous studies in three principal ways:

1. Initially, the initial inventory is considered a decision variable, enabling proactive
stock placement before the planning horizon, a capability frequently neglected in typical
omnichannel optimization models that usually assume a fixed initial stock level.

2. Inter-channel transfers and customer fulfillment are jointly optimized, capturing
substitution dynamics and operational interdependencies across channels. Most existing
studies treat these processes independently, limiting their ability to represent real
omnichannel behavior.

3. The formulation follows a unified profit-maximizing perspective, integrating sales
revenue, holding cost, inter-channel transfer cost, delivery cost, and initial procurement
cost into a single objective function. This holistic economic viewpoint addresses a key
methodological gap in the existing omnichannel optimization literature.

3.5. Solution Approach

The model is solved using FICO XpressMP, employing branch-and-bound search, cutting-
plane strategies, and tightened Big-M formulations calibrated for numerical stability.
Scalability was evaluated by increasing the number of products, channels, and planning periods.
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Across all tested configurations, the solver consistently produced optimal or near-optimal
solutions within practical computation times. These results demonstrate that the proposed
formulation is computationally tractable and suitable for real-world omnichannel planning
environments.

4. Empirical Application

This section presents the empirical implementation of the proposed MILP formulation using
real operational data from a national cosmetics and personal-care company in Tirkiye. The
objective is to evaluate the model’s ability to represent actual omnichannel planning dynamics,
validate its structural assumptions, and assess its computational performance under realistic
network configurations.

The empirical analysis is based on 26 weeks of operational, demand, and cost data, covering
both peak and off-peak periods. The firm operates a multi-tiered distribution network consisting
of a factory (W), four regional distribution centers (DCs), branded retail stores, franchisees,
marketplace channels, and an internal e-commerce platform. These elements collectively reflect
the structural and operational characteristics commonly observed in modern omnichannel
cosmetics supply chains.

Seasonality plays a critical role in the firm’s demand patterns. Demand peaks occur during the
national vacation seasons, promotional waves, and the summer period, resulting in significant
variability in order volumes across channels. This volatility makes inventory positioning, cross
channel coordination, and distribution-center (DC) capacity planning essential for meeting
service requirements without excessive working capital or emergency freight. The company’s
network structure, seasonal demand fluctuations, and channel heterogeneity provide an
empirically rich environment for testing the model’s robustness and external validity.

The empirical implementation evaluates how the integrated model allocates inventory, fulfills
multi-channel demand, and manages inter-DC balancing under realistic cost and logistical
constraints. The results show a close match between the optimized decisions and the historical
operational behavior, offering robust proof of the model’s real-world effectiveness.

4.1 Network Structure and Operational Context

The empirical network used in this study consists of a multi-echelon omnichannel distribution
structure involving upstream procurement, regional distribution centers, retail outlets, and
multiple sales channels. The main components of the real operational network are summarized
below.

1. Factory (W):

Serves as the upstream facility, receiving all inbound procurement and feeding downstream
DCs.

2. Four regional distribution centers (DCs):
e DC1 and DC2: high-throughput, picker-efficient e-commerce and fast-moving retail hubs.

« DC3 and DC4: primarily responsible for replenishing retail stores across their respective
regions.

3. Retail stores and franchisees:

Ensure constant availability and shelf readiness by implementing regular small-batch
restocking processes.
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4. E-commerce and marketplace channels:

Characterized by wide SKU assortments, volatile demand spikes, and pick-intensive
operational requirements.

Embedded operational rules
Historical data reveal several stable operational patterns that were incorporated into the model:
e E-commerce flows consolidate at DC1-DC2, reflecting higher picking productivity.

o Remote DCs prioritize retail-store fulfillment, contributing to e-commerce only when
cost-feasible.

o Inter-DC transfers occur selectively, typically ahead of promotional events.

e Direct W—E shipments are not allowed by policy; instead, e-commerce orders must flow
through DCs.

« Emergency shipments are rare and costly and are used only to prevent stockouts.

These operational rules were embedded into the MILP formulation by removing infeasible arcs,
adjusting flow possibilities, and applying implicit penalties for unmet demand. This ensures
that the mathematical model adheres to the firm’s actual decision logic and governance
structure.

The generalized omnichannel network shown in Figure 1 illustrates the overall multi-echelon
structure and its interactions with facilities, sales channels, and customer segments. While
simplified for clarity, this schematic reflects the key flow directions considered in the model—
factory-to-DC movements, inter-DC transfers, DC-to-channel allocations, and channel-to-
customer fulfillment routes.

While Figure 1 provides a structural overview of the omnichannel network, the actual mapping
between sales channels and customer segments in the empirical cosmetics dataset is presented
in Table 1. This mapping defines the demand-side structure that the model must satisfy across
heterogeneous channel types.
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Figure 1. Generalized omnichannel distribution network structure used in the empirical

application
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Table 1. Mapping between sales channels and customer segments in the cosmetics

industry
Sales Channel Customer Segment Description
(Type)
Brand.com (E-commerce) Individual End-users purchasing online directly from the
' Consumers (B2C) brand’s official website.
Marketplace (e.g., Amazon, Individual Price-sensitive consumers with high expectations
Trendyol) Consumers (B2C) for delivery speed and promotions.

Retail Chains (Watsons,
Sephora, Gratis)

Retail Stores (B2B)

Large beauty and personal-care chains were
replenished regularly through DCs.

Franchise Stores

Retail Stores (B2B)

Independently operated stores under the brand’s

franchise model.

Pharmacy Channel
(Dermocosmetics)

Pharmacies (B2B)

Dermatology-focused pharmacies offering
specialized cosmetics and skin-care products.
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L
Wholesale Distribution Wholesale Dealers Reglongl wholesalers supplylng independent
(B2B) cosmetics shops and small retailers.
Export Clients International importers and distributors purchasing
Export Channel (B2B) in bulk for foreign markets.

4.2 Data Description

The empirical dataset used for model validation consists of:

o SKU-level weekly demand for all customer—channel combinations (26 weeks).
e Inventory records at W, DCs, and retail stores.

e Procurement quantities and inbound lead times.

o Cost parameters, including: inventory holding cost, customer delivery cost, inter-DC
transfer cost and implicit lost-sales penalties (stockouts not permitted operationally).

e Picking-productivity metrics and channel-specific labor costs.
e Seasonality indicators capturing high-demand periods and promotional peaks.

These inputs create a realistic computational environment and allow the MILP to replicate the
operational trade-offs faced by planners in omnichannel cosmetics distribution.

All data were anonymized and aggregated prior to analysis in accordance with the firm’s
confidentiality policies. No customer or employee-level identifiers were used.
The study was conducted under a formal data-sharing agreement, and all analyses complied
with GDPR-aligned internal data-governance standards.

4.3 Instance Design and Scaling

To analyze scalability and solver behavior, a structured set of 16 test instances was created by
varying four design dimensions:

e D: number of distribution centers

e S: total number of retail stores served
e |: number of SKUs (product families)
e T: number of planning periods

The combinations were chosen to reflect SKU—channel—period ratios commonly observed in
cosmetics supply chains. The instance grid varies both network width (D, S) and planning depth
(1, T), enabling systematic stress testing of the formulation.

Cosmetics assortments typically include 10-40 product families, and promotional intensity can
significantly shift demand composition across periods. The instance structure reflects these
operational realities and enables a controlled evaluation of the computational performance.

Table 2 summarizes the arc counts, binary activation variables, total variables, and constraints
forall (D, S, I, T) combinations.
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Table 2. Instance scales and model size

D S I T Arcs A Binary Vars (= Total Vars (= 2ITA+  Constraints (= ITA +
I'T-A) IT(D+2S+2)) IT(D+2S+2))

2 10 2 3 26 156 456 300

2 10 10 4 26 1,040 3,040 2,000

2 10 20 8 26 4,160 12,160 8,000

2 10 30 12 26 9,360 27,360 18,000

4 20 2 3 100 600 1,476 876

4 20 10 4 100 4,000 9,840 5,840

4 20 20 8 100 16,000 39,360 23,360

4 20 30 12 100 36,000 88,560 52,560

6 40 2 3 282 1,692 3,912 2,220

6 40 10 4 282 11,280 26,080 14,800

6 40 20 8 282 45,120 104,320 59,200

6 | 40 30 12 282 101,520 234,720 133,200

8 60 2 3 552 3,312 7,404 4,092

8 60 10 4 552 22,080 49,360 27,280

8 60 20 8 552 88,320 197,440 109,120

8 60 30 12 552 198,720 444,240 245,520

Table 2 reports arc counts, binary variables, total variables, and constraints for all (D, S, I, T)
combinations.

The analysis shows that
e Binary variables scale approximately as BINARYVAR=IXTxA
e Total variables grow at 2ITA+IT(D+25+2)
e Constraints expand nearly linearly with network size.

The largest instance includes nearly 200,000 binary variables and over 70,000 constraints,
remaining tractable under the selected solver settings.

4.4  Solver Behavior and Computational Performance
All instances were solved using FICO Xpress with a relative MIP gap tolerance of 0.001.
Table 3 summarizes runtime behavior, optimality gaps, and complexity indicators.

Table 3. Runtime and optimality

D S I T Complexity C=I'T-A Time (s) Time (min) MIP Gap
2 10 2 |3 156 1.0 0.02 ‘ 0.0%
2 /10 10 4 1,040 12.0 0.20 0.0%
2 10 20 8 4,160 72.8 1.21 ‘ 0.0%
2 10 30 12 9,360 208.8 348 0.0%
4 20 2 3 600 5.1 0.08 ‘ 0.0%
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4 20 10 4 4,000 59.5 0.99 0.0%
4 20 20 8 16,000 361.0 6.02 0.0%
4 20 30 12 36,000 1,036.0 17.27 0.0%
6 40 2 3 1,692 18.8 0.31 0.0%
6 40 10 4 11,280 221.8 3.70 0.0%
6 40 20 8 45,120 1,344.7 22.41 0.0%
6 40 30 12 101,520 3,859.0 64.32 <0.1%
8 60 2 3 3312 54.1 0.90 ‘0.0%
8 60 10 4 | 22,080 637.1 10.62 0.0%
8 60 20 8 88320 3,862.9 64.38 ‘50.1%
8 60 30 12 198,720 11,085.4 184.76 <0.1%
Key findings:

« All instances converged within practical time limits, including the largest case (=185
minutes).

e The optimality gaps remained at or below 0.1%, confirming that the relaxation and
branching strategies were implemented effectively.

e Solver presolve reduced row and column counts by 30-45%, contributing to numerical
stability.

« No custom cuts or specialized branching rules were required, reflecting the structured nature
of the formulation.

4.5 Qualitative Validation of Model Behavior

The optimized solution’s practical validity was evaluated by comparing the model’s outputs
with historical demand patterns, planner heuristics, and the structural decision rules that guide
the focal company’s omnichannel operations. Confidentiality concerns prevent the release of
sensitive KPIs, although the qualitative alignment between the MILP decisions and actual
behaviors provides solid evidence that the proposed formulation effectively represents the
operational dynamics of the cosmetics distribution network.

First, the model consistently reproduced the company’s established e-commerce consolidation
pattern. High-velocity SKUs were preferentially positioned in DC1 and DC2, which historically
serve as the main e-commerce fulfillment hubs due to their superior picker productivity and
throughput capacity. Remote DCs (DC3 and DC4) were utilized primarily for nearby retail
stores, contributing to online fulfillment only when marginal cost comparisons justified it. This
behavior mirrors the firm’s actual allocation logic and validates the cost structure embedded in
the MILP.

Second, the optimized solution recommended targeted pre-promotion transfer flows from
surplus regions toward high-demand DCs prior to major national campaigns. This aligns with
planners’ routine preparation for Bayram and Black Friday periods, during which inter-DC
balancing is used to prevent stockouts without engaging in speculative inventory build-up. The
model’s ability to anticipate these shifts without explicit campaign constraints demonstrates its
capacity to internalize seasonality effects through cost and demand signals.
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Third, the MILP a reduction in speculative holding at the factory (W) and a shift toward
demand-justified allocation at the DC level. This outcome reflects the company’s strategic
move toward minimizing working capital exposure and indicates that the model accurately
interprets the trade-off between excessive upstream stock and cost-effective downstream
positioning.

Fourth, the optimized plan eliminated the need for emergency transport, a costly corrective
action historically used to resolve shortages. The model achieved this reduction through
proactive balancing flows and more accurate inventory positioning, consistent with the
managerial heuristics documented during the field study. This qualitative match reinforces the
credibility of the decision rules generated by the optimization.

Finally, the decision logic of the MILP was validated through discussions with planning
managers. They confirmed that the solution’s structural patterns—prioritizing e-commerce
throughput, employing selective pre-campaign transfers, limiting unnecessary W—DC flows,
avoiding fragmented fulfillment, and leveraging marginal-cost-driven routing—closely reflect
the organization’s established operational principles.

Together, these qualitative validations demonstrate that the proposed MILP model generates
theoretically optimal solutions and faithfully reflects the firm’s real decision-making processes
in a consistent and operationally credible manner. This alignment strengthens the external
validity of the empirical application and supports the suitability of the model as a decision-
support tool for omnichannel cosmetics distribution networks.

5. Results and Discussion

This section synthesizes the empirical evidence produced by the proposed MILP across various
network settings. The results combine structural flow patterns, economic impacts, robustness
tests, and alignment with actual operational procedures. The overall results of the study
demonstrate that the formulation is both computationally practical and feasible for managers to
implement within the context of omnichannel inventory management.

5.1 Baseline vs. Optimized Inventory Flows

The firm’s historical allocation and replenishment practices were used as a benchmark for a
baseline plan that was compared to an optimized solution derived from a mixed-integer linear
programming model. Systematic and clear flow patterns were consistently observed throughout
all experiments, demonstrating the structural enhancements resulting from the optimization
process.

E-commerce Consolidation

e The optimized solution directs the bulk of e-commerce demand to DC1-DC2, using their
high picking productivity and labor efficiency.

e Remote DCs contribute to e-commerce fulfillment only selectively, reducing ad hoc
W—-DC—E emergency flows.

Retail Flow Stabilization

e Replenishment frequency increases modestly for seasonal top-SKUs, improving shelf
availability.

e Slow-moving items are shifted toward the e-commerce channel to avoid unnecessary
handling and overstock at retail stores.
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Inter-DC Transfers

e Only targeted SKUs—primarily those approaching promotional-period demand surges—

are rebalanced across DCs.

o These transfer patterns closely mirrored historical behavior, reinforcing the external
validity of the empirical results.

Working Capital Efficiency

e Inventory at the factory (W) declines substantially, lowering speculative stockholding.
o Demand-driven positioning at DCs enhances service reliability, reduces last-minute

inbound freight, and mitigates obsolescence risk.

The constructive baseline serves as a realistic comparator and allows the structural effects of
the optimized solution to be clearly interpreted.

5.2 Economic Results

This subsection evaluates the economic impacts of the optimal solution for the largest test
scenario. The scenario is configured with the parameters D =8, S =60, | =30, and T =12, as

described in Section 5.1.
5.2.1 Economic Interpretation

Table 3 reports the economic outcomes and complexity indicators for the large-scale instance.

Table 3. Profit Impact of the optimized solution (Large Scenario)

METRIC VALUE

Arcs A

Complexity C=1-T-A
Calibrated Runtime
Total Units (W—Dc)
Retail Units (Sum Over Stores)
E-Commerce Units
Revenue

Procurement Cost
Transport Cost

Holding Cost

Profit

Service Level

Active Arcs

The results reveal several noteworthy patterns:
« The total network profit increases by 11.6% relative to the constructive baseline.

552
198,720

11,085.4 s (184.76 min), <0.1%
1,023,660

852,540

171,120

103,221,600

51,183,000.00

5,203,860.00

25,591.50

46,809,148.50

100%

76

e The vast majority of this gain originates from:

o 38% reduction in emergency transport cost, and
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o The balancing flows were reduced by 22%.

« Although inventory holding increases slightly at DC1-DC2 (+6—8%), this is outweighed by
reductions in unplanned freight and lost-sales risk.

Overall, the MILP reallocates flows in a way that lowers cost exposure while maintaining
operational flexibility.

5.2.2 Sensitivity Analysis
Sensitivity tests by

e Cost fluctuations, primarily a deviation of £20% in acquisition, shipping, and storage
expenses.

o Shifting lead times by £1-2 periods.

Across all tested configurations:

« Profit improvements persisted in the 7%—14% range, and

o Service levels consistently met or exceeded the 100% targets.

These findings confirm that the economic gains are robust to moderate changes in cost
multipliers and operational assumptions, indicating that the optimization logic is not overly
sensitive to calibration choices.

5.2.3 Alignment with Real Operational Behavior

Consistent with the qualitative validation in Section 4.5, the economic results are supported by
operationally meaningful decision patterns:

« Consolidation of e-commerce flows at high-throughput DCs

o Selective inter-DC balancing prior to seasonal peaks

e Limited W—DC movements aligned with promotion calendars
e Avoidance of W—E direct flows

« Controlled working-capital allocation

This correspondence strengthens the external validity of the model and demonstrates its
practical applicability to omnichannel inventory planning. The model’s accuracy is supported
by empirical data from the case company. In addition, several behavioral patterns commonly
observed in retail logistics—such as DC consolidation, selective balancing, and demand-driven
stock positioning—further reinforce its validity.

5.3 Computational Feasibility and Practical Applicability
Summary of Empirical Findings

Across the instance grid, the proposed MILP delivered certified optimal solutions in seconds to
a few minutes for small-to-medium networks and time-limited solutions at <0.1% MIP gap for
national-scale cases.

For the largest instance (8,60,30,12) with A=552 arcs and C=198,720, computational time was
11,085.4 seconds (184.76 minutes) with <0.1% gap.

These results indicate that the model is operationally viable for periodic omnichannel planning
cycles when solved with modern MIP technology.
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Practical Applicability to Real-World Settings
o Tactical Scope (High Applicability):

For networks with diameters D of 4 or less, sizes S of 20 or less, numbers of islands | of 20 or
less, and topological numbers T of 8 or less:

o The proof of optimality can be given within six minutes.
o Making the formulation suitable for the monthly campaign preparation planning.
o National Scale (Time-Limited Applicability:

For scenarios with D > 6 and S > 40, together with [ =30 and T = 12, similar behavioral patterns
were observed.

o Solution times rise but still deliver <0.1% gap within 1-3 hours,
o Aligning with enterprise planning cycles and enable near-optimal policy updates.
e Numerous Portfolios (Decomposition Advisable):

For configurations beyond these levels (for example, D is greater than or equal to 8, S is greater
than or equal to 80, I is greater than or equal to 50, and T is greater than or equal to 18):

o Decomposition or hybrid heuristics become advisable to maintain responsiveness
while preserving solution quality.

5.4 Positioning of the Findings in the Literature

The empirical findings extend prior omnichannel optimization research by demonstrating that
a unified MILP can simultaneously capture:

« allocation decisions,

e inter-DC balancing, and

o channel-specific fulfillment flows
at realistic scales.

Unlike earlier studies that modeled pricing, allocation, or fulfillment independently, the
integrated structure here reveals cross-channel substitution, seasonal dynamics, and
consolidation behaviors that emerge endogenously from cost and demand interactions.
The robustness of these patterns across network sizes highlights the contribution of this
formulation to scalable, profit-oriented omnichannel planning.

6. Conclusion and Future Research

This study presents a mixed-integer linear programming (MILP) model that jointly optimizes
product—-channel allocation, inventory positioning, customer order fulfillment, and inter-
channel transfer decisions within a multi-period omnichannel distribution network. The model
integrates a wide range of operational components, including initial procurement costs,
inventory holding costs, customer delivery expenses, and inter-channel transfer costs, into a
framework focused on maximizing profits, effectively merging multiple decision layers that are
typically addressed independently in existing research.

The empirical application, conducted using operational data from a real cosmetics company,
demonstrates that the model is capable of accurately reproducing the firm’s historical flow
patterns. Our results show that the proposed formulation successfully captures the operational
logic of the system and can function as a practical decision-support mechanism.
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In terms of computational performance, the results indicate that the model exhibits a scalable
structure. While regional and medium-sized instances yield optimal solutions within minutes,
even large-scale national scenarios are solved within reasonable timeframes with acceptable
MIP gaps. This level of performance suggests that the model aligns well with the S&OP
planning horizons and is suitable for use in operational planning processes.

Although the study provides an integrated framework, several limitations create opportunities
for future research. The model operates under deterministic demand and fixed parameters,
whereas real omnichannel environments can exhibit uncertainty, variable lead times,
promotional dynamics, and varying service-level requirements. Similarly, binding constraints
such as warehouse capacity, labor limitations, or transportation capacity were not incorporated
into the current version. Additionally, the model has been validated within a single sector and
country context; other industries may involve more complex channel behaviors or stronger price
sensitivity.

The potential directions for future work include the following:

(1) Incorporating uncertainty and service-level requirements: Integrating demand
uncertainty, variable lead times, and probabilistic service levels would enable more robust
planning structures.

(2) Introducing capacity constraints: Adding constraints related to storage space, labor
availability, picking stations, and transportation capacity would produce more realistic results,
particularly during intensive promotional periods.

(3) Advanced decomposition and acceleration techniques for large-scale networks:
Lagrangian relaxation and Benders decomposition accelerate the solution of large-scale
network problems by directly applying advanced decomposition and acceleration techniques.
For numerous instances where full solvers become computationally demanding, heuristic or
approximation methods could provide practical near-optimal solutions.

(4) Rolling-horizon planning: Integrating rolling-horizon updates would create a more
dynamic structure aligned with real-time operational planning practices.

(5) Behavioral components and cross-sector validation: Incorporating channel migration,
pricing effects, or demand-shaping dynamics, along with empirical applications in different
sectors, would improve the model's generalizability.

This study introduces a comprehensive, profit-driven, and evidence-based decision model for
omnichannel distribution networks. The proposed framework addresses a major gap in the
existing literature and offers a robust foundation for both theoretical analysis and real-world
application.
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