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ABSTRACT   

Assessing renewable energy resources requires robust multi-criteria decision-making tools capable of handling 

uncertainty, vagueness, and the complex interactions among sustainability-related criteria. This study provides a 

comprehensive comparison of several widely used fuzzy-based multi-criteria decision-making methods applied to 

renewable energy source evaluation, including Fuzzy DEMATEL, Fuzzy AHP, Fuzzy ANP, Fuzzy TOPSIS, 

Fuzzy VIKOR, Fuzzy COPRAS, Fuzzy ELECTRE, etc., and also spherical, intuitionistic or neutrosophic fuzzy 

variants reported in the literature. By applying each method to the same dataset, the analysis highlights the 

similarities, divergences, and sensitivity patterns that emerge across different fuzzy modelling perspectives. 

Building on these comparative insights, the study introduces a novel interval-valued neutrosophic fuzzy hybrid 

decision-making framework integrating DEMATEL, ANP, and TOPSIS. In the proposed model, interval-valued 

neutrosophic fuzzy DEMATEL is employed to capture causal relationships among criteria and determine influence 

weights, while interval-valued neutrosophic fuzzy ANP models interdependencies within the decision network. 

Finally, interval-valued neutrosophic fuzzy TOPSIS is used to generate a robust and discriminative ranking of 

renewable energy source alternatives. The results demonstrate that the hybrid interval-valued neutrosophic 

framework offers enhanced consistency, stronger representation of expert hesitation, and improved prioritization 

stability compared with conventional fuzzy MCDM methods. Overall, this study advances the methodological 

landscape of renewable energy source decision-making by both benchmarking existing fuzzy techniques and 

proposing an innovative interval-valued neutrosophic hybrid approach that can support more reliable and 

sustainable energy planning. 

Keywords: Renewable Energy Sources, TOPSIS, ANP, MCDM, interval-valued neutrosophic sets. 
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YENİLENEBİLİR ENERJİ KAYNAKLARININ SEÇİMİNDE BULANIK TABANLI 

ÇKKV YAKLAŞIMLARININ KARŞILAŞTIRILMASI: YENİ BİR ARALIK 

DEĞERLİ NÖTROSOFİK BULANIK DEMATEL-ANP-TOPSIS ÇERÇEVESİ 

 

ÖZET 

Yenilenebilir enerji kaynaklarının değerlendirilmesi; belirsizlik, muğlaklık ve sürdürülebilirlikle ilişkili kriterler 

arasındaki karmaşık etkileşimleri ele alabilen sağlam çok kriterli karar verme araçlarını gerektirmektedir. Bu 

çalışma, yenilenebilir enerji kaynağı değerlendirmesinde uygulanan ve yaygın olarak kullanılan çeşitli bulanık 

tabanlı çok kriterli karar verme yöntemlerinin kapsamlı bir karşılaştırmasını sunmaktadır. Bu yöntemler arasında 

Bulanık DEMATEL, Bulanık AHP, Bulanık ANP, Bulanık TOPSIS, Bulanık VIKOR, Bulanık COPRAS, Bulanık 

ELECTRE gibi yaklaşımlar ile literatürde rapor edilen küresel, sezgisel veya nötrosofik bulanık varyantlar yer 

almaktadır. Her bir yöntemin aynı veri seti üzerinde uygulanmasıyla gerçekleştirilen analiz, farklı bulanık 

modelleme bakış açıları arasında ortaya çıkan benzerlikleri, ayrışmaları ve duyarlılık örüntülerini ortaya 

koymaktadır. Bu karşılaştırmalı bulgular üzerine inşa edilen çalışmada, DEMATEL, ANP ve TOPSIS 

yöntemlerini bütünleştiren yeni bir aralık değerli nötrosofik bulanık hibrit karar verme çerçevesi önerilmektedir. 

Önerilen modelde, kriterler arasındaki nedensel ilişkileri yakalamak ve etki ağırlıklarını belirlemek amacıyla aralık 
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değerli nötrosofik bulanık DEMATEL kullanılmaktadır. Karar ağındaki karşılıklı bağımlılıkların modellenmesi 

için aralık değerli nötrosofik bulanık ANP uygulanmaktadır. Son aşamada ise yenilenebilir enerji kaynağı 

alternatiflerinin sağlam ve ayırt edici bir sıralamasını elde etmek amacıyla aralık değerli nötrosofik bulanık 

TOPSIS yöntemi kullanılmaktadır. Elde edilen sonuçlar, hibrit aralık değerli nötrosofik çerçevenin, geleneksel 

bulanık ÇKKV yöntemlerine kıyasla daha yüksek tutarlılık, uzman tereddüdünün daha güçlü bir temsili ve 

önceliklendirme kararlılığında iyileşme sunduğunu göstermektedir. Genel olarak bu çalışma, mevcut bulanık 

teknikleri karşılaştırmalı olarak değerlendirmesinin yanı sıra, daha güvenilir ve sürdürülebilir enerji planlamasını 

destekleyebilecek yenilikçi bir aralık değerli nötrosofik hibrit yaklaşım önererek yenilenebilir enerji kaynağı karar 

verme alanındaki metodolojik literatüre katkı sağlamaktadır. 

Anahtar Kelimler: Yenilenebilir Enerji Kaynakları, TOPSIS, ANP, ÇKKV, Aralık Değerli Nötrosofik Setler. 

JEL Sınıflandırması: C44, P28, Q29 

 

1. INTRODUCTION 

The accelerating transition toward low-carbon energy systems has intensified global 

interest in renewable energy sources as viable alternatives to conventional fossil-based 

technologies. Governments, energy planners, and policymakers are increasingly required to 

evaluate a diverse range of renewable options-such as solar, wind, biomass, geothermal, and 

hydropower-each presenting unique technological characteristics, investment requirements, 

operational constraints, and environmental implications. Selecting the most appropriate 

renewable energy source is, therefore, not merely a technical decision but a strategic and 

multidimensional process that must account for sustainability targets, regional resource 

availability, socio-economic conditions, and long-term policy objectives. This complexity 

underscores the importance of systematic decision-making frameworks capable of integrating 

heterogeneous information and accommodating uncertain expert judgments. 

Renewable energy planning naturally involves multiple, often conflicting criteria, 

including cost competitiveness, energy efficiency, environmental performance, social 

acceptance, technological maturity, and infrastructural compatibility. These criteria are 

interdependent and context-specific, making the selection task highly sensitive to both 

subjective assessments and contextual uncertainties. Traditional decision-making approaches, 

based on crisp numerical evaluations, typically assume well-defined preferences and 

deterministic conditions-assumptions that rarely hold in real-world energy evaluation 

processes. Experts frequently rely on linguistic expressions such as “high potential”, “moderate 

risk”, or “low cost-effectiveness”, which inherently contain vagueness and imprecision. This 

situational ambiguity necessitates analytical approaches capable of reflecting human cognitive 

uncertainty more accurately. 

In this context, fuzzy set theory and its extensions have been widely adopted for multi-

criteria energy decision-making due to their ability to model ambiguity, subjective opinions, 

and incomplete information. Over the past two decades, numerous fuzzy-based Multi-Criteria 

Decision Making (MCDM) methods -such as Fuzzy AHP, Fuzzy ANP, Fuzzy TOPSIS, Fuzzy 

VIKOR, Fuzzy DEMATEL, and their advanced variants including interval-valued, 

intuitionistic, spherical fuzzy forms, etc.- have been applied to renewable energy planning. Each 

method offers distinct modelling capabilities: hierarchical weighting in Fuzzy AHP, network-

based dependency representation in Fuzzy ANP, distance-based ranking in Fuzzy TOPSIS, 

compromise-based evaluation in Fuzzy VIKOR, and causal influence analysis in Fuzzy 

DEMATEL. Although these approaches have contributed substantially to the literature, there 

remains limited comparative evidence regarding how they differ when applied to a common 

dataset, and how their outputs converge or diverge under identical decision conditions. 

A further limitation in the existing literature is the lack of hybrid decision-making 

models that simultaneously integrate causal relationship analysis, interdependent weighting 

mechanisms, and robust ranking procedures within a unified fuzzy framework. Neutrosophic 

fuzzy sets, introduced to more comprehensively represent expert hesitation via truth-
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membership, indeterminacy-membership and falsity-membership degrees, offer an advanced 

mathematical foundation for modelling uncertainty. However, neutrosophic fuzzy hybrid 

models combining DEMATEL, ANP, and TOPSIS remain underexplored especially for 

renewable energy planning. Such an integrated structure has the potential to enhance decision 

consistency by capturing cause-effect structures, modelling criteria interdependencies, and 

strengthening alternative ranking robustness based on neutrosophic evaluations. 

Motivated by these gaps, this study first conducts a comprehensive benchmarking 

analysis of widely used fuzzy-based MCDM methods applied to RES selection. By evaluating 

multiple prominent fuzzy methods on a common dataset, the study generates comparative 

insights into methodological performance, ranking sensitivity, and decision stability across 

different fuzzy approaches. Building on these insights, the study introduces a novel hybrid 

Interval-Valued Neutrosophic Fuzzy DEMATEL–ANP–TOPSIS framework designed to 

address key limitations of existing approaches. The proposed model leverages interval-valued 

neutrosophic fuzzy DEMATEL for rigorous causal mapping, interval-valued neutrosophic 

fuzzy ANP for deriving interdependent criteria weights, and interval-valued neutrosophic fuzzy 

TOPSIS for generating a transparent, distance-based ranking of renewable energy source 

alternatives. The framework aims to improve modelling granularity and reduce ambiguity in 

expert evaluations while providing a more analytically grounded decision structure. 

The main contributions of this paper are threefold. First, it presents one of the most 

systematic benchmarking studies comparing major fuzzy-based MCDM methods for renewable 

energy source selection using identical criteria and alternatives. Second, it proposes a novel 

hybrid interval-valued neutrosophic fuzzy decision-making model that integrates causal, 

relational, and ranking components. Third, it validates the proposed model and demonstrates 

its analytical advantages through comparative analyses, sensitivity evaluations, and 

methodological robustness tests. 

The remainder of this paper is structured as follows. Section 2 provides a detailed 

literature review on renewable energy sources (RES) decision-making and fuzzy Multi-Criteria 

Decision Making (MCDM) approaches. Section 3 describes the methodological framework, 

datasets, and computational procedures used in both the benchmarking and hybrid model. 

Section 4 reports the outcomes of the proposed interval-valued neutrosophic hybrid framework. 

Section 5 offers visualization, comparison and interpretation of the results. Finally, Section 6 

concludes the study with discussions and conclusions including key insights and future research 

directions. 

2. LITERATURE REVIEW AND RENEWABLE ENERGY SOURCE DECISION-

MAKING APPROACHES 

The evaluation of renewable energy sources (RES) has increasingly relied on fuzzy 

multi-criteria decision-making (MCDM) methods, which have become some of the most 

preferred and frequently applied analytical tools in contemporary energy planning research. 

This growing prominence is largely attributed to their ability to incorporate linguistic 

judgments, capture the internal vagueness of expert assessments, and minimize the influence of 

personal bias in complex decision environments. Traditional crisp evaluation techniques often 

fall short when dealing with uncertain, imprecise, or subjective information—conditions that 

are inherent to RES assessment due to fluctuating resource availability, technological 

variability, and socio-economic considerations. In contrast, fuzzy MCDM approaches, such as 

fuzzy AHP, fuzzy VIKOR, fuzzy TOPSIS, and their advanced extensions, provide more 

detailed and representative judgements of expert opinions by allowing degrees of membership 

rather than rigid classifications. As a result, these methods enhance the robustness, 

transparency, and reliability of decision-making processes, making them indispensable in 

studies aiming to prioritize RES alternatives, optimize energy portfolios, and support 



E 

Eurasian Econometrics, Statistics & Empirical Economics Journal               2025, Volume:26 

 

 

141 

 

sustainable policy development. Given the reasons outlined above, the following literature 

review with different RES decision-making approaches is given below under various thematic 

categories to provide a clearer and more systematic examination of existing studies in literature.  

Conventional multi-criteria decision-making (MCDM) approaches have long served as 

foundational analytical tools for evaluating RES, especially in contexts where decision 

parameters are clearly defined, structured, and predominantly quantitative. Methods such as 

AHP (Analytical Hierarchy Process) (Saaty, 1977; Saaty, 1980), ANP (Analytical Network 

Process) (Saaty, 1996), TOPSIS (Technique of Order Preference Similarity to the Ideal 

Solution) (Hwang and Yoon, 1981), VIKOR (Vise Kriterijumska Optimizacija I Kompromisno 

Resenje) (Opricovic, 1998), ELECTREE (Elimination Et Choix Traduisant la REaite) (Roy, 

1968) and PROMETHEE (Preference Ranking Organization Method for Enrichment 

Evaluations)  (Brans, 1982; Brans and Vincke, 1982) allow decision makers to systematically 

compare alternatives based on a predefined hierarchy of criteria, compute relative weights, and 

derive preference rankings through transparent mathematical formulations. In RES planning, 

these conventional methods offer advantages such as ease of implementation, conceptual 

clarity, and straightforward interpretability, making them suitable for early-stage feasibility 

studies and data-rich contexts. However, their reliance on exact numerical inputs and rigid 

preference structures often limits their applicability when expert opinions, environmental risks, 

and socio-economic factors exhibit uncertainty or imprecision. Despite this limitation, 

conventional MCDM techniques remain widely utilized as a baseline or benchmarking tool due 

to their methodological robustness and longstanding acceptance in decision sciences. 

Fuzzy and advanced fuzzy MCDM approaches have emerged as indispensable tools in 

RES evaluation, driven by the inherent uncertainty, linguistic vagueness, and subjective 

judgments embedded in energy planning processes. Techniques such as Fuzzy AHP (M2: 

Çelikbilek and Tüysüz, 2015; Wang et al., 2020; Taylan et al., 2020; Tarife et al., 2023), Fuzzy 

TOPSIS (Taylan et al., 2020; Alghassab, 2022), Fuzzy VIKOR (M3: Çelikbilek and Tüysüz, 

2015; Taylan et al., 2020; Abdul et al., 2024), Fuzzy ELECTRE (M5: Çelikbilek, 2023; Shanthi 

and Basavaraju, 2024; Mao et al., 2024; Kang et al., 2024), Fuzzy COPRAS (M6: Çelikbilek, 

2025a; Guan et al., 2023; Yilmaz, 2023), and their extensions—including grey (M1: M4: 

Çelikbilek and Tüysüz, 2016; Badi et al., 2023, Debnath et al., 2024), intuitionistic fuzzy 

(Ilbahar et al., 2022; Bilgili et al., 2022; Gupta et al., 2023; Tripathi et al., 2023; Joshi et al., 

2023; Ke et al., 2023; Anjum et al., 2025), hesitant fuzzy (Acar et al., 2018; Alghassab, 2022; 

Krishankumar et al., 2022; Narayanamoorthy et al., 2023; Sahu et al., 2023; Zhang et al., 2023), 

spherical fuzzy (Kutlu Gündoğdu and Kahraman, 2020; Nguyen et al., 2022; Alkan, 2023; 

Ghoushchi et al., 2023; Abdul and Wenqi, 2024; Alballa et al., 2024), interval type-2 fuzzy 

(Hendiani and Walther, 2023; Karamoozian et al., 2023; Sağbaş et al., 2023; Li et al., 2025; 

Zhang et al., 2025), and neutrosophic frameworks (M7: M8: Çelikbilek, 2025b; Atassi and 

Yang, 2022; Ali, 2023; Masoomi et al., 2023; Abbas et al., 2025; Mishra et al., 2025) —enable 

decision makers to incorporate degrees of membership rather than rigid numerical assignments. 

This flexibility provides a more refined representation of expert assessments and better captures 

ambiguity related to climate conditions, technological performance, socio-political constraints, 

and environmental impacts. As renewable energy systems often involve complex, 

interdependent factors with limited empirical data, fuzzy-based methods offer enhanced realism 

and improve the credibility of rankings and prioritizations. Consequently, they have become 

some of the most prevalent analytical approaches in contemporary RES decision-making 

literature. For these reasons, and considering that Çelikbilek’s studies offer valuable reference 

points within this research domain, his work will be examined in a comparative manner, and 

the associated dataset will be employed in the application phase of the present study. The 

method codes of the studies and the related methods in these studies are mentioned with M-
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labeled symbols to be used in the comparison part briefly with these symbols. Together with all 

these considerations, and for the purpose of providing background information and evaluating 

the existing literature, the following section also examines other RES approaches. 

Hybrid and integrated decision-making approaches combine the strengths of multiple 

methods, some of which listed above, to overcome the limitations of any single technique, 

resulting in more comprehensive and robust evaluation frameworks for renewable energy 

planning. Examples include AHP-TOPSIS, DEMATEL-ANP, BWM-VIKOR, SWARA-

COPRAS, and entropy-weighted fuzzy systems. Hybrid models facilitate the integration of 

diverse analytical functions such as determining objective and subjective weights, analyzing 

causal relationships among criteria, and deriving multi-dimensional rankings under uncertainty. 

In RES contexts -where technical, economic, environmental, and social factors interact in 

complex ways- integrated approaches provide a more holistic perspective by triangulating 

insights from different methodologies. This combination not only strengthens the sensitivity 

and stability of results but also enhances decision transparency by cross-validating findings 

across multiple analytical layers (Doost et al., 2024). As a result, hybrid MCDM frameworks 

have gained considerable momentum in studies aiming to identify optimal RES alternatives, 

evaluate sustainability trade-offs, and support regional or national energy policy formulation. 

Optimization and AI-based decision approaches represent a rapidly expanding domain 

in RES analysis, driven by the growing need for predictive accuracy (Unsal et al., 2024), 

dynamic modelling (Srinivasan et al., 2023; Yousef et al., 2023; Ukoba et al., 2024), and 

automated decision-making (Ukoba et al., 2024; Sriram et al., 2025). Methods such as genetic 

algorithms (GA), particle swarm optimization (PSO), multi-objective evolutionary algorithms, 

neural networks, reinforcement learning, and other machine learning–enhanced models enable 

researchers to optimize energy system configurations (Bagherian et al., 2021; Gribis et al., 

2023), predict resource availability (Alkabbani et al., 2021), and analyze large-scale datasets 

with high complexity (Li and Wu, 2025). These techniques are especially valuable for tasks 

such as optimizing hybrid energy systems, forecasting solar and wind outputs, designing storage 

strategies, and addressing multi-objective trade-offs between cost, emissions, and reliability. In 

contrast to traditional MCDM methods that rely heavily on expert judgment, AI-based 

approaches leverage iterative learning and data-driven patterns to generate decision 

recommendations. Their ability to handle high-dimensional datasets, capture nonlinear 

interactions, and adapt to changing system conditions positions them as crucial tools for 

developing the resilient and intelligent energy systems envisioned in modern sustainability 

agendas. 

Scenario-based and uncertainty-driven decision approaches play a critical role in 

renewable energy planning by addressing variability in future conditions such as climate 

fluctuations (Ramadan et al., 2021; Moradi et al., 2025; Nuriyev and Nuriyev, 2025), market 

prices (Sharma et al., 2017; Song et al., 2021; Khademi and Rezaei, 2022), policy shifts (Kaya 

et al., 2018; Nuriyev et al., 2023; Nuriyev and Nuriyev, 2025), and technological advancements 

(Kalbar et al., 2012; Parvaned and Hammad, 2024; Mizrak and Şahin, 2025). Techniques 

including Monte Carlo simulation, stochastic programming, robustness analysis, and scenario-

based sensitivity modelling enable decision makers to evaluate how renewable energy 

alternatives perform under different possible futures. These methods acknowledge that energy 

planning is inherently uncertain and that deterministic rankings may not hold when external 

conditions change. By incorporating probabilistic distributions, risk profiles, and scenario 

narratives, uncertainty-based models provide deeper insights into the resilience and stability of 

renewable options. This allows planners to identify strategies that remain viable across a broad 

spectrum of conditions rather than relying on a single, static evaluation. Such approaches are 
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increasingly important for long-term investment planning, national energy roadmaps, and 

climate-adaptive renewable energy deployment. 

Sustainability-oriented decision frameworks integrate environmental, economic, social, 

and technical dimensions into renewable energy evaluation to ensure that decisions align with 

broader sustainability goals. Approaches such as life cycle assessment (LCA)-MCDM 

combinations (Siksnelyte-Butkiene et al., 2020; Das and De, 2023), triple bottom line–based 

frameworks (Saiprasad et al., 2019; Sepehr et al., 2020; Ecer, 2021; Lerman et al., 2021; Liao, 

2023; Ragazou et al., 2024), and ESG-oriented evaluation methods (Xu and Zhao, 2024; Kara 

et al., 2025; Sklavos et al., 2025) account for the multifaceted consequences of RES 

deployment. These frameworks enable researchers to assess impacts such as greenhouse gas 

reductions, resource consumption, social acceptance, job creation, ecosystem disturbance, and 

long-term economic viability. By emphasizing the interconnectedness of sustainability 

dimensions, these models provide a more balanced and ethically grounded basis for selecting 

RES alternatives. In practice, sustainability-oriented frameworks help policymakers, investors, 

and planners prioritize energy technologies that offer the greatest societal value while 

minimizing negative trade-offs. As global energy transitions accelerate, such comprehensive 

frameworks are becoming increasingly essential for guiding responsible and future-proof 

energy strategies. 

Despite the substantial body of research employing various conventional, fuzzy, hybrid, 

and AI-enhanced decision-making approaches for renewable energy source selection, several 

critical gaps continue to limit the methodological maturity and comparative reliability of 

existing studies. A recurring issue within the literature is the lack of systematic benchmarking 

across different fuzzy-based MCDM frameworks, particularly under conditions of uncertainty 

where linguistic evaluations, interdependent criteria, and nonlinear decision structures 

dominate. Many studies rely on single-model analyses without cross-validating results through 

alternative fuzzy environments or integrated causal weighting mechanisms, which raises 

concerns regarding methodological robustness and generalizability. Furthermore, the majority 

of existing works do not sufficiently address the propagation of uncertainty across sequential 

decision layers such as causal analysis, criteria weighting, and alternative ranking. This creates 

a clear need for more comprehensive frameworks capable of linking interrelationships among 

criteria with advanced fuzzy representations that capture both indeterminacy and interval-

valued ambiguity. In this context, comparative benchmarking becomes essential to identify 

methodological strengths, limitations, and performance differences across fuzzy MCDM 

families. Accordingly, the present research contributes to filling this gap by proposing a novel 

Interval-Valued Neutrosophic Fuzzy DEMATEL-ANP-TOPSIS framework, designed to 

enhance the reliability of renewable energy source evaluation by integrating causal dependence 

analysis, neutrosophic uncertainty modeling, and multi-stage ranking. By systematically 

comparing this framework with established approaches in the literature, the study aims to 

generate clearer methodological insights and provide a stronger benchmarking foundation for 

future renewable energy decision-making research. 

3. METHODOLOGY 

In this section, detailed methodology of the study is given under three sub-sections as 

Dataset and Evaluation Criteria, Overview of Compared Fuzzy-Based MCDM Methods and 

The Proposed Integrated Neutrosophic Fuzzy DEMATEL-ANP-TOPSIS Framework. In the 

first sub-section, details of the evaluation criteria and the dataset used for the comparison and 

the application of the new Integrated Neutrosophic Fuzzy Framework are explained. Then, in 

the second sub-section, overview of compared fuzzy-based MCDM methods are listed and 

interpreted. Finally, the application of the proposed integrated neutrosophic fuzzy framework 

with the dataset is comprehensively analyzed and reviewed.  
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3.1. Dataset and Evaluation Criteria 

There are various studies evaluating Renewable Energy Sources (RES) by using 

different criteria sets in the literature. Çelikbilek and Tüysüz (2015) evaluated RES under 11 

criteria set. RES alternatives are evaluated by applying not only fuzzy MCDM methods 

(Çelikbilek and Tüysüz, 2015; Çelikbilek, 2023; Çelikbilek, 2025a; Çelikbilek, 2025b) but also 

grey MCDM methods (Çelikbilek and Tüysüz, 2016; Çelikbilek, 2016) with the listed criteria 

set by the authors. Due to the diversity of the applications and the results, this study used the 

same criteria and data set from the thesis of Çelikbilek (2016) in order to compare 

methodologies while applying the proposed integrated neutrosophic fuzzy DEMATEL–ANP–

TOPSIS framework. The criteria set used for the evaluation of RES in the studies are given 

below in Table 1 (Çelikbilek, 2016; Çelikbilek, 2025). 

 

Table 1. The Criteria Set used for the Evaluation of RES. 

Symbol Criterion 

C1 Accessibility and Sustainability 

C2 Efficiency/Effectiveness 

C3 Diversity of Usage Areas 

C4 Storability 

C5 Transmission Efficiency 

C6 Initial Investment Cost 

C7 Simplicity of the Facility 

C8 Technology Requirements 

C9 Maintenance Requirements 

C10 Accident Risk and Effects 

C11 Harms to Nature and Human 

 

3.2. Overview of Compared Fuzzy-Based MCDM Methods 

The results obtained from the studies and methodological approaches detailed in the 

previous sections are comprehensively listed in Table 2. This table consolidates the comparative 

findings of the eight previously discussed methods, providing both the criteria set rankings used 

for the evaluation of RES alternatives and the final rankings of RES alternatives themselves. 

To enrich this comparative perspective, the results derived from This Study (TS) have also been 

incorporated into the table for the graphics in Section 5, where these combined outcomes will 

be further examined through visual representations, enabling a more intuitive assessment of 

similarities, divergences, and methodological differences across the nine different approaches. 

This integrative comparison not only highlights the robustness of the proposed IVN-based 

framework but also situates its results within the broader context of established decision-making 

techniques in the renewable energy literature. 

 

Table 2. Comparison of the Fuzzy-Based MCDM evaluations of RES. 

Symbol Ranking in the Related Methods 

Criteria M1 M2 M3 M4 M5 M6 M7 M8 

C1 10 9 9 10 9 9 9 9 

C2 6 4 4 6 4 4 10 10 

C3 9 11 11 9 11 11 11 11 
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C4 5 3 3 5 3 3 3 3 

C5 7 5 5 7 5 5 6 6 

C6 8 7 7 8 7 7 5 5 

C7 4 6 6 4 6 6 8 8 

C8 2 1 1 2 1 1 1 1 

C9 11 10 10 11 10 10 4 4 

C10 1 2 2 1 2 2 2 2 

C11 3 8 8 3 8 8 7 7 

RES M1 M2 M3 M4 M5 M6 M7 M8 

A1 1 1 1 1 1 2 1 1 

A2 2 2 2 2 3 3 2 3 

A3 3 3 4 3 2 1 4 2 

A4 5 4 5 5 5 5 5 5 

A5 4 5 3 4 4 4 3 4 

 

3.3. The Proposed Integrated Interval-Valued Neutrosophic Fuzzy DEMATEL–

ANP–TOPSIS Framework 

The proposed integrated interval-valued neutrosophic (IVN) Fuzzy DEMATEL–ANP–

TOPSIS Framework is given in this section in detail. The proposed approach has three main 

parts. In the first part, the relationship among the criteria set is examined by applying IVN 

DEMATEL (Decision making trial and evaluation laboratory). Then, in the second part, the 

weights and the priority vectors of the decision matrix are obtained by applying the IVN ANP. 

Finally, in the third part, the evaluation and ranking of the RES alternatives are calculated by 

applying the proposed IVN TOPSIS approach. To understand the details of the proposed 

approach, checking the basic information about the IVN sets and their operations can be better. 

The studies of Zhang et al. (2016), Karaşan and Kahraman (2018), Kahraman et al. (2019) and 

Deveci and Torkayesh (2021) can be checked for the details of IVN sets and their operations.  

3.3.1. The Interval-Valued Neutrosophic DEMATEL 

Decision Making Trial and Evaluation Laboratory (DEMATEL) method, originally 

proposed by Gabus et al. (1972), aims to identify the causal interrelationships within a set of 

criteria. It origins from graph theory and the method enables the determination of both the 

direction and intensity of influences among criteria. Moreover, it provides a quantitative 

assessment of how strongly each criterion affects or is affected by others, thereby offering a 

comprehensive understanding of the structural dependencies within the system. There are 

various applications of DEMATEL with neutrosophic sets in different energy-related problems 

(E.g. Abdel-Basset et al., 2024; Çelikbilek, 2025b; Edalatpanah, 2025; Pakdel et al., 2025).  

The calculation procedures of IVN DEMATEL approach are given step by step below. 

Step 1: The Problem, the Criteria Set, and Linguistic Scales: First of all, the problem is 

clearly defined in detail including alternative set, criteria set. Subsequently, the relevant set of 

criteria associated with the problem is identified. A linguistic scale accompanied by IVN 

number representations is then established, not only to facilitate expert evaluations but also to 

support subsequent computational procedures. The linguistic assessment scale adopted for the 

IVN-DEMATEL analysis in this study, along with its corresponding IVN representations, is 

presented in Table 3. 
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Table 3. Linguistic Evaluation Scale and Equivalent Neutrosophic Numbers for DEMATEL. 

Linguistic Term Crisp Score Neutrosophic Sets 

No Influence (NO) 0 〈[0.05,0.10], [0.70,0.80], [0.85,0.90]〉 
Very Low Influence (VL) 1 〈[0.20,0.30], [0.50,0.60], [0.60,0.70]〉 
Low Influence (L) 2 〈[0.40,0.50], [0.30,0.40], [0.35,0.45]〉 
High Influence (H) 3 〈[0.70,0.80], [0.10,0.20], [0.05,0.15]〉 
Very High Influence (VH) 4 〈[0.85,0.90], [0.05,0.10], [0.05,0.10]〉 

 

In the DEMATEL framework, each criterion is assumed to have no influence on itself; 

therefore, the main diagonal of the direct-relation matrix is excluded from expert evaluations. 

In traditional DEMATEL, the main diagonal is directly set to zero. To ensure consistency with 

the neutrosophic DEMATEL formulation, rather than assigning 

〈[0.05,0.10],[0.70,0.80],[0.85,0.90]〉, the vector 〈[0,0],[1,1],[1,1]〉 is used for diagonal entries 

to explicitly represent the state of absolute no influence. 

Step 2: Combining the IVN Relation Matrices: The pairwise comparison matrices 

constructed from the criteria set is evaluated by the decision makers to determine the relational 

structure among the criteria. It is important to mention that pairwise comparisons in DEMATEL 

differ from those in AHP and ANP. In AHP or ANP, only the upper (or lower) triangular of the 

main diagonal of the matrix is assessed. In contrast, DEMATEL requires evaluations on both 

sides of the main diagonal, since the influence between two criteria is not necessarily mutual. 

That is, while criterion A may influence criterion B, criterion B may exert no influence—or a 

different level of influence—on criterion A.  

Step 3: Combining All IVN Direct Relation Matrices: Let 𝑅̃𝑑 = [〈𝑟̃𝑖𝑗〉]𝑛×𝑛
 denote the 

direct relation matrix provided by decision maker 𝑑 ∈ 𝐷, and let 𝑆̃ = [〈𝑠̃𝑖𝑗〉 =

〈[𝑇𝑆𝑖𝑗

𝐿 , 𝑇𝑆𝑖𝑗

𝑈 ] , [𝐼𝑆𝑖𝑗

𝐿 , 𝐼𝑆𝑖𝑗

𝑈 ] , [𝐹𝑆𝑖𝑗

𝐿 , 𝐹𝑆𝑖𝑗

𝑈 ]〉]
𝑛×𝑛

 represent the aggregated direct-relation matrix. The 

individual direct relation matrices obtained from all decision makers are combined by taking 

their average, as specified in Eq. (1).  

𝑆̃ =
∑ 𝑅̃𝑖

𝐷
𝑖=1

𝐷
               (1) 

Step 4: Deneutrosophicating the IVN Direct Relation Matrix: Let 𝑆 = [𝑠𝑖𝑗]𝑛×𝑛
 denote 

the crisp direct-relation matrix. The neutrosophic direct-relation matrix of the criteria set is 

converted into its crisp form through a deneutrosophication process applying the Eq. (2) 

(Bolturk and Kahraman, 2018) as the score function. This conversion provides crisp values that 

allow the identification and interpretation of the relational structure among the criteria. 

𝑠𝑖𝑗 =
𝑇𝑠𝑖𝑗

𝐿 + 𝑇𝑠𝑖𝑗
𝑈

2
+ (1 −

𝐼𝑠𝑖𝑗
𝐿 + 𝐼𝑠𝑖𝑗

𝑈

2
)(𝐼𝑠𝑖𝑗

𝑈 ) − (
𝐹𝑠𝑖𝑗

𝐿 + 𝐹𝑠𝑖𝑗
𝑈

2
) (1 − 𝐹𝑠𝑖𝑗

𝑈 )         (2) 

Step 5: Normalizing the Direct Relation Matrix: Eq. (3) is used for the normalization of 

the direct relation matrix S. 

𝑠𝑖𝑗 =
𝑠𝑖𝑗

max
 

[max
𝑗

(∑ 𝑠𝑖𝑗
𝑛
𝑖=1 ),max

𝑖
(∑ 𝑠𝑖𝑗

𝑛
𝑗=1 )]

             (3) 

Step 6: Calculating of the Total Relation Matrix: Eq. (4) is used for the calculation of 

the total relation matrix of criteria set. In the equation, 𝑇 = [𝑡𝑖𝑗]𝑛×𝑛
 is the total relation matrix 

and I is identity matrix.  

𝑇 = 𝑆(𝐼 − 𝑆)−1               (4) 

Step 7: Determining the Relation Among Criteria: To identify whether each criterion 

predominantly influences others or is primarily influenced by them, the column sums 𝐶 =
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[𝑐𝑖]𝑛×1 and row sums 𝑅 = [𝑟𝑗]1×𝑛
 are computed for all criteria. After obtaining the C and R 

vectors, their sum and difference are calculated. If (𝑐𝑖 − 𝑟𝑖) > 0, Criterion i is interpreted as a 

cause, meaning it exerts a dominant influence on other criteria. Conversely, if (𝑐𝑖 − 𝑟𝑖) < 0, 

Criterion i is considered an effect, indicating that it is predominantly influenced by the other 

criteria. 

𝑐𝑖 = ∑ 𝑡𝑖𝑗
𝑛
𝑗=1                 (5) 

𝑟𝑗 = ∑ 𝑡𝑖𝑗
𝑛
𝑖=1                  (6) 

Step 8: Constructing the Network Structure: To construct the network structure, a 

threshold value must first be specified by the decision makers. If an element 𝑡𝑖𝑗 ∈ 𝑇𝑛×𝑛 is 

greater than or equal to this threshold, it is considered to represent a meaningful relationship, 

including its direction, between Criterion 𝑖 and Criterion 𝑗. In cases where the decision makers 

are unable to set an appropriate threshold, it may be determined by computing the average value 

of the total relation matrix. Additionally, the threshold can be adjusted upward or downward 

depending on the desired sensitivity level in capturing the strength of the relationships. 

3.3.2. The Interval-Valued Neutrosophic ANP 

The Analytic Network Process (ANP), introduced by Saaty (1996), is a generalization 

of AHP designed to solve MCDM problems that involve interdependencies and feedback 

among criteria. The IVN ANP (IVN-ANP) follows the same fundamental solution framework 

as the classical ANP but embeds IVN numbers throughout the computational procedures. This 

incorporation of IVN representations is particularly useful in group decision making process 

that includes subjective judgments and high uncertainty, as it helps to mitigate individual bias 

and the inherent vagueness of linguistic assessments. The IVN-ANP procedure employed in 

this study is adapted from the study of Bolturk and Kahraman (2018) and is outlined step-by-

step below. 

Computational steps of the grey based ANP applied in this study are given below. 

 Step 1: The Problem, the Criteria Set, and Linguistic Scales: Similarly, as DEMATEL, 

first of all, the problem is clearly defined in detail including alternative set, criteria set. 

Subsequently, the relevant set of criteria associated with the problem is identified. A linguistic 

scale accompanied by IVN number representations is then established, not only to facilitate 

expert evaluations but also to support subsequent computational procedures. The linguistic 

assessment scale adopted for the IVN-ANP analysis in this study, along with its corresponding 

IVN representations, is presented in Table 4 (Bolturk and Kahraman, 2018). Pairwise 

comparisons in the ANP method are conducted similarly to those in AHP. However, unlike 

AHP, ANP involves pairwise comparisons not only among criteria but also among sub-criteria 

and alternatives that may exert mutual influence on one another. This consideration of 

interdependencies distinguishes ANP from AHP. The pairwise comparison judgments are 

organized into matrices structured as illustrated below. Additionally, unlike AHP, not all 

criteria in ANP are compared with each other. Criteria that are found to have no relationship 

based on DEMATEL network analysis are excluded from the pairwise comparison process. 

 

Table 4. Linguistic Scales and their IVN Number Representations.   

Linguistic Term Neutrosophic Sets 

Equally Important 〈[0.50,0.50], [0.50,0.50], [0.50,0.50]〉 
Weakly More Important 〈[0.50,0.60], [0.35,0.45], [0.40,0.50]〉 
Moderately Important 〈[0.55,0.65], [0.30,0.40], [0.35,0.45]〉 
Moderately More Important 〈[0.60,0.70], [0.25,0.35], [0.30,0.40]〉 
Strongly Important 〈[0.65,0.75], [0.20,0.30], [0.25,0.35]〉 
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Strongly More Important 〈[0.70,0.80], [0.15,0.25], [0.20,0.30]〉 
Very Strongly Important 〈[0.75,0.85], [0.10,0.20], [0.15,0.25]〉 
Very Strongly More Important 〈[0.80,0.90], [0.05,0.10], [0.10,0.20]〉 
Extremely Important 〈[0.90,0.95], [0.00,0.05], [0.05,0.15]〉 
Extremely High Important 〈[0.95,1.00], [0.00,0.00], [0.00,0.10]〉 
Absolutely More Important 〈[1.00,1.00], [0.00,0.00], [0.00,0.00]〉 

 The pairwise comparisons are obtained from the decision makers like the matrix given 

below. 𝐴𝐼𝑉𝑁
𝑑  is the pairwise comparison matrix of Decision Maker 𝑑 ∈ 𝐷 and 〈𝑎𝑖𝑗

𝑑 〉 =

〈[𝑇𝑎𝑖𝑗

𝐿 , 𝑇𝑎𝑖𝑗

𝑈 ] , [𝐼𝑎𝑖𝑗

𝐿 , 𝐼𝑎𝑖𝑗

𝑈 ] , [𝐹𝑎𝑖𝑗

𝐿 , 𝐹𝑎𝑖𝑗

𝑈 ]〉, where 𝑖, 𝑗 ∈ [1, 𝑛]. 

𝐴𝐼𝑉𝑁
𝑑 =

[
 
 
 
〈𝑎11

𝑑 〉 〈𝑎12
𝑑 〉 ⋯ 〈𝑎1𝑛

𝑑 〉

〈𝑎21
𝑑 〉 〈𝑎22

𝑑 〉 ⋯ 𝑎2𝑛
𝑑

⋮ ⋮ ⋱ ⋮
〈𝑎𝑛1

𝑑 〉 〈𝑎𝑛2
𝑑 〉 ⋯ 𝑎𝑛𝑛

𝑑 ]
 
 
 

               (7) 

 Step 2: Combining all IVN Pairwise Comparisons: Eq. (8) given below is applied to 

combine all the pairwise comparisons obtained by the decision makers. Aggregated pairwise 

comparison matrix is shown as 𝐴𝐼𝑉𝑁 = [〈𝑎𝑖𝑗
 〉]

𝑛×𝑛
. 

〈𝑎𝑖𝑗
 〉 = √∏ 〈𝑎𝑖𝑗

𝑑 〉𝐷
𝑖=1

𝐷
                (8) 

 Step 3: Deneutrosophicating the IVN Pairwise Comparison Matrix: The IVN pairwise 

comparison matrix is deneutrosophicated by applying Eq. (2) given in the previous sub-section.  

 Step 4: Calculating the Priority Vectors: For each criterion column, pairwise 

comparison matrices are conducted using the AHP method among the criteria that influence it 

as explained in the previous steps, resulting in priority vectors. The dimensions of these priority 

vectors are not fixed; rather, they vary depending on the number of criteria affecting each 

individual criterion. Once the priority vectors are computed, they are placed into a vector of 

size 𝑛 (the total number of criteria), with the values assigned to the positions representing the 

influencing criteria, while the remaining positions -corresponding to non-influencing criteria- 

are assigned a value of zero. 

  Step 5: Generating the Supermatrix: All the priority vectors computed up to this 

stage are combined to form the weighted supermatrix 𝑊 = [𝑎𝑖𝑗]𝑛×𝑛
. The dimension of this 

supermatrix is 𝑛 × 𝑛. In cases where both sub-criteria and main criteria exist, this process is 

carried out in two steps: first, the sub-criteria matrices are constructed, and then these sub-

criteria matrices are aggregated to form the overall main supermatrix. 

  Step 6: Calculating the limit supermatrix and the global weights: Prior to 

obtaining the limit supermatrix, it is necessary to ensure that the supermatrix is normalized, 

column stochastic. This involves normalizing each column by dividing every element by the 

total sum of that column. Following this normalization step, the columns sum to one. The limit 

supermatrix is then determined by applying Eq. (9) to the normalized supermatrix. In the limit 

supermatrix, all column vectors become identical. By normalizing this limit supermatrix, the 

global weights of all elements are derived, with the total sum of these global weights equal to 

one. 
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lim
𝑘⟶∞

𝑊𝑘                  (9) 

3.3.3. The Interval-Valued Neutrosophic TOPSIS 

IVN TOPSIS is an advanced decision-making method designed to handle uncertainty, 

indeterminacy, and inconsistency more effectively than traditional approaches. Building on the 

classical TOPSIS framework (Hwang and Yoon, 1981), IVN TOPSIS incorporates IVN sets to 

represent and process information that is vague, incomplete, or contradictory. This enhanced 

capability allows decision makers to capture the inherent ambiguity of real-world problems 

more realistically. 

The IVN theory extends fuzzy and intuitionistic fuzzy sets by introducing three 

membership degrees: truth, indeterminacy, and falsity, each expressed as intervals rather than 

precise values. This detailed representation supports a richer characterization of uncertainty, 

which is particularly useful in complex decision making environments where information is 

often imprecise or partially unknown. By integrating IVN sets with the TOPSIS ranking 

procedure, the method calculates the relative closeness of each alternative to the positive ideal 

and negative ideal solutions, taking into account the IVN uncertainty. 

The classical TOPSIS method and its variants are applied to various problems in 

literature such as engineering design (Mendez et al., 2020; Chede et al., 2021; Wang et al., 

2022; Hameed et al., 2022), supplier selection (Sureeyatanapas et al., 2018; Jain et al., 2018; 

Rouyendegh et al., 2020; Hajiaghaei-Keshteli et al., 2023), medical diagnosis (Akram et al., 

2020; Zulqarnain et al., 2020; Naeem et al., 2021; Demirtaş and Dalkılıç, 2023; Masmali et al., 

2024), risk assessment (Gul eet al., 2021; Koulinas et al., 2021; Awodi et al., 2023; Dang et al., 

2024; Yu and Liu, 2025; Tang et al., 2025), etc. However, IVN TOPSIS theory and applications 

have not been constructed and applied yet to many different problems and fields by 

incorporating flexibility and robustness. Compared to classical TOPSIS and other variants, IVN 

TOPSIS offers improved handling of ambiguous data and better supports decision makers in 

scenarios with incomplete or inconsistent information. Because of this, following IVN TOPSIS 

framework is derived from the studies of Karaşan et al. (2019) and Sharma et al. (2019) for the 

evaluation of RES alternatives and their comparison.  

Step 1: The Problem, the Criteria Set, the Alternatives and  Creating the IVN Decision 

Matrix: The first step of TOPSIS method is also the same as the other methods. The decision 

problem is clearly and comprehensively defined, including the alternatives set and the 

evaluation criteria set. Following this, the relevant criteria related to the problem are identified. 

To accurately capture expert judgments under uncertainty, a linguistic scale based IVN numbers 

is established. This scale not only facilitates expert assessments by allowing expression of truth, 

indeterminacy, and falsity degrees with interval values but also supports the mathematical 

computations required in the IVN TOPSIS methodology. The priority vectors obtained in the 

previous sub-sections are combined to construct the IVN decision matrix as 𝐴 = [〈𝑎̃𝑖𝑗〉]𝑚×𝑛
. 

Here, m is the number of RES alternatives and n is the number of criteria for the evaluation of 

these alternatives.  

Step 2: Normalizing the IVN Decision Matrix: After constructing the decision matrix, 

the next step typically involves its normalization. However, when working with IVN numbers, 

there is a crucial consideration. If the decision matrix is derived through the IVN-AHP process 

in the initial step, it inherently represents a normalized IVN decision matrix. Consequently, this 

normalization step can be omitted. 

〈𝑎̃𝑖𝑗
 〉 =

〈𝑎̃𝑖𝑗
 〉

(∑ 〈𝑎̃𝑖𝑗
 〉2𝑚

𝑖=1 )
1

2⁄
             (10) 

Step 3: Weighting the Normalized IVN Decision Matrix: Let 𝑊 = [𝑤𝑗] represent the 

weight vector corresponding to the criteria set. To incorporate the relative importance of each 
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criterion into the decision-making process, the weighted normalized IVN decision matrix, 

denoted as 𝑊𝐴 = [〈𝑤𝑎̃𝑖𝑗〉]𝑚×𝑛
, is computed. This matrix is obtained by applying the weighting 

procedure defined in Eq. (11), where each element of the normalized IVN decision matrix is 

multiplied by the respective criterion weight from 𝑊. The resulting matrix effectively combines 

both the normalized decision values and their corresponding weights, providing a 

comprehensive representation of the weighted assessments across all alternatives and criteria. 

〈𝑤𝑎̃𝑖𝑗〉 = 𝑤𝑗〈𝑎̃𝑖𝑗
 〉             (11) 

Step 4: Determining the Positive and Negative Ideal Solutions: In this step, a Positive 

ideal solution (PIS) (𝐴+), and Negative ideal solution (NIS) (𝐴−) are derived from the values 

within the decision matrix corresponding to the problem. These solutions represent hypothetical 

alternatives that do not exist in the original problem but are constructed based on the best and 

the worst possible values for each criterion. According to the TOPSIS methodology, 

alternatives are evaluated based on their distances to these ideal and negative ideal solutions. 

Eq. (12) below illustrate the calculation assuming all criteria are beneficial (positive). For 

criteria that are considered non-beneficial (negative), the conditions are applied in the opposite 

manner as in Eq. (13); that is, the ideal solution for a negative criterion corresponds to its 

minimum value rather than the maximum value for the truth-membership (T) and maximum 

value rather than the minimum. Value for the indeterminacy-membership (I) and the falsity-

membership (F). 

𝐴+ = 〈𝑤𝑎̃𝑗
+〉 = 〈[max

𝑖
𝑇𝑤𝑎̃𝑖𝑗

𝐿 , max
𝑖

𝑇𝑤𝑎̃𝑖𝑗

𝑈 ] , [min
𝑖

𝐼𝑤𝑎̃𝑖𝑗

𝐿 , min
𝑖

𝐼𝑤𝑎̃𝑖𝑗

𝑈 ] , [min
𝑖

𝐹𝑤𝑎̃𝑖𝑗

𝐿 , min
𝑖

𝐹𝑤𝑎̃𝑖𝑗

𝑈 ]〉  (12) 

𝐴− = 〈𝑤𝑎̃𝑗
−〉 = 〈[min

𝑖
𝑇𝑤𝑎̃𝑖𝑗

𝐿 , min
𝑖

𝑇𝑤𝑎̃𝑖𝑗

𝑈 ] , [max
𝑖

𝐼𝑤𝑎̃𝑖𝑗

𝐿 , max
𝑖

𝐼𝑤𝑎̃𝑖𝑗

𝑈 ] , [max
𝑖

𝐹𝑤𝑎̃𝑖𝑗

𝐿 , max
𝑖

𝐹𝑤𝑎̃𝑖𝑗

𝑈 ]〉(13) 

Step 5: Calculating the Distances Among the Alternative and PIS/NIS: This step 

involves calculating the distances of each alternative to PIS and NIS. In the TOPSIS method, 

which employs Euclidean distance as the distance measure, 𝑑𝑖
+  denotes the distance of the 𝑖-th 

alternative from PIS, while 𝑑𝑖
−  represents its distance from NIS. In IVN TOPSIS, these 

Euclidean distance calculation procedures are conducted by using IVN numbers as done in the 

previous sub-sections. The distances explained here are computed following the formulations 

provided in Eqs. (14-15).  

𝑑𝑖
+ = ∑ 𝑑(〈𝑤𝑎̃𝑖𝑗〉, 〈𝑤𝑎̃𝑗

+〉 )𝑛
𝑗=1            (14) 

𝑑𝑖
− = ∑ 𝑑(〈𝑤𝑎̃𝑖𝑗〉, 〈𝑤𝑎̃𝑗

−〉 )𝑛
𝑗=1            (15) 

Step 6: Calculating the Relative Closeness: The method proceeds from the principle that 

the most preferable alternative is the one that is farthest from NIS and simultaneously closest 

to the PIS. Based on this rationale, the relative closeness values of the alternatives to the ideal 

solution (𝐴+) are computed for the final evaluation, as shown below in Eq. (16). These relative 

closeness coefficients enable the ranking of alternatives by integrating both distance measures 

within a single performance indicator as 𝑅𝐶𝑖. 

𝑅𝐶𝑖 =
𝑑𝑖

−

𝑑𝑖
++𝑑𝑖

−              (16) 

 Step 7: Deneutrosophicating the IVN Relative Closeness Values: The IVN relative 

closeness values are deneutrosophicated by applying Eq. (2) given in the previous sub-section.  

Step 8: Ranking of the Alternatives: Since the relative closeness value for each 

alternative is calculated with respect to its distance from NIS, the alternative with the highest 

𝑅𝐶𝑖 value is identified as the most desirable alternative. To evaluate the remaining alternatives, 

all 𝑅𝐶𝑖 values are ranked in descending order. The alternative with the smallest 𝑅𝐶𝑖 value is 

considered the least preferable, as it lies closest to the negative ideal solution and thus represents 

the poorest performance among the available alternatives. 
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4. Results: The Proposed Neutrosophic Fuzzy Hybrid Framework 

In this section, the proposed integrated IVN Fuzzy DEMATEL–ANP–TOPSIS 

framework is applied to the evaluation of renewable energy sources (RES). Five key RES 

alternatives are considered: Solar Energy (SE), Wind Energy (WE), Hydroelectric Energy (HE), 

Geothermal Energy (GE), and Biomass Energy (BE). These alternatives were selected because 

they represent the most widely recognized and practically implemented renewable energy 

technologies across different regions. SE relies on converting sunlight into electricity through 

photovoltaic or thermal systems, making it highly suitable for areas with strong solar 

irradiation. WE utilizes the kinetic energy of moving air masses to produce power, offering 

strong potential especially in coastal or open-field locations. HE generates electricity from the 

potential and kinetic energy of flowing water, typically through dams or run-of-river systems, 

and is known for its stability and high capacity factors. GE exploits the Earth’s internal heat, 

providing a consistent and low-emission energy source particularly effective in geothermal-rich 

zones. Lastly, BE converts organic matter into usable energy forms, allowing waste materials 

to be valorized within sustainable energy cycles. 

All evaluations and pairwise comparisons were conducted by 11 experts who are 

actively involved in renewable energy-related research or professional practice. To enhance 

objectivity, the expert panel was formed by selecting individuals from various engineering 

disciplines, ensuring that multiple technical perspectives are represented. This interdisciplinary 

structure not only minimizes subjective evaluations but also enriches the analytical depth by 

bringing together expertise from electrical, mechanical, environmental, and energy engineering 

backgrounds. 

A total of 11 criteria used in the evaluation, presented in Table 1, were taken from 

(Çelikbilek, 2016; Çelikbilek, 2025). These criteria encompass economic, environmental, 

operational, and technological aspects to provide a balanced and comprehensive assessment of 

RES alternatives. For the details of criteria set and data set, the mentioned study can be checked.  

4.1. Determining Relationships 

Based on the linguistic evaluations provided by 11 domain experts, the DEMATEL 

questionnaires were combined by applying Eq. (1). This computational step enabled the 

transformation of individual expert judgments into a unified decision structure, ensuring 

consistency and reducing subjectivity across the assessment process. Accordingly, the resulting 

Combined IVN Direct Relation Matrix of RES criteria set was obtained. The finalized matrix, 

which reflects the integrated IVN evaluations of causal interrelationships among the criteria, is 

presented in Table 5 below. 

 

Table 5. Combined IVN Direct Relation Matrix of RES Criteria Set. 
 C1 C2 C3 C4 C5 C6 

C1 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.681,0.754],[0.145,
0.218],[0.154,0.227]> 

<[0.545,0.627],[0.231,
0.318],[0.259,0.340]> 

<[0.568,0.645],[0.231,
0.318],[0.250,0.327]> 

<[0.559,0.645],[0.218,
0.309],[0.231,0.318]> 

<[0.495,0.590],[0.263,
0.363],[0.277,0.372]> 

C2 
<[0.595,0.663],[0.222,
0.300],[0.250,0.318]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.645,0.736],[0.145,
0.236],[0.131,0.222]> 

<[0.536,0.627],[0.240,
0.336],[0.250,0.340]> 

<[0.513,0.600],[0.254,
0.345],[0.281,0.368]> 

<[0.477,0.572],[0.281,
0.381],[0.300,0.395]> 

C3 
<[0.359,0.436],[0.400,
0.490],[0.472,0.550]> 

<[0.454,0.545],[0.295,
0.390],[0.331,0.422]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.490,0.572],[0.286,
0.372],[0.327,0.409]> 

<[0.563,0.636],[0.245,
0.327],[0.272,0.345]> 

<[0.568,0.654],[0.218,
0.309],[0.227,0.313]> 

C4 
<[0.613,0.690],[0.186,
0.263],[0.209,0.286]> 

<[0.686,0.772],[0.122,
0.209],[0.104,0.190]> 

<[0.609,0.681],[0.209,
0.290],[0.222,0.295]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.640,0.727],[0.159,
0.245],[0.154,0.240]> 

<[0.600,0.690],[0.181,
0.272],[0.181,0.272]> 

C5 
<[0.577,0.654],[0.227,
0.309],[0.250,0.327]> 

<[0.650,0.727],[0.168,
0.245],[0.177,0.254]> 

<[0.609,0.690],[0.195,
0.281],[0.200,0.281]> 

<[0.568,0.654],[0.213,
0.300],[0.231,0.318]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.627,0.718],[0.163,
0.254],[0.154,0.245]> 

C6 
<[0.481,0.572],[0.277,
0.372],[0.304,0.395]> 

<[0.581,0.663],[0.213,
0.300],[0.227,0.309]> 

<[0.550,0.618],[0.259,
0.336],[0.300,0.368]> 

<[0.381,0.463],[0.368,
0.463],[0.427,0.509]> 

<[0.531,0.609],[0.268,
0.354],[0.295,0.372]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

C7 
<[0.450,0.536],[0.309,
0.400],[0.354,0.440]> 

<[0.431,0.527],[0.295,
0.390],[0.340,0.436]> 

<[0.390,0.481],[0.350,
0.445],[0.404,0.495]> 

<[0.290,0.363],[0.459,
0.554],[0.545,0.618]> 

<[0.413,0.500],[0.345,
0.436],[0.400,0.486]> 

<[0.709,0.790],[0.118,
0.200],[0.100,0.181]> 

C8 
<[0.536,0.636],[0.227,
0.327],[0.227,0.327]> 

<[0.686,0.772],[0.122,
0.209],[0.104,0.190]> 

<[0.659,0.754],[0.131,
0.227],[0.104,0.200]> 

<[0.454,0.545],[0.300,
0.400],[0.327,0.418]> 

<[0.509,0.590],[0.268,
0.354],[0.304,0.386]> 

<[0.822,0.881],[0.059,
0.118],[0.050,0.109]> 

C9 
<[0.504,0.600],[0.245,
0.345],[0.259,0.354]> 

<[0.463,0.563],[0.281,
0.381],[0.304,0.404]> 

<[0.500,0.590],[0.259,
0.354],[0.281,0.372]> 

<[0.404,0.500],[0.336,
0.436],[0.377,0.472]> 

<[0.381,0.472],[0.350,
0.445],[0.409,0.500]> 

<[0.590,0.681],[0.181,
0.272],[0.186,0.277]> 

C10 
<[0.400,0.490],[0.336,
0.436],[0.381,0.472]> 

<[0.404,0.481],[0.363,
0.454],[0.422,0.500]> 

<[0.554,0.636],[0.231,
0.318],[0.254,0.336]> 

<[0.431,0.518],[0.313,
0.409],[0.359,0.445]> 

<[0.400,0.490],[0.331,
0.427],[0.386,0.477]> 

<[0.568,0.654],[0.218,
0.309],[0.227,0.313]> 
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C11 
<[0.290,0.363],[0.459,
0.554],[0.545,0.618]> 

<[0.272,0.363],[0.445,
0.545],[0.527,0.618]> 

<[0.427,0.509],[0.327,
0.418],[0.381,0.463]> 

<[0.368,0.454],[0.372,
0.472],[0.427,0.513]> 

<[0.368,0.454],[0.372,
0.472],[0.427,0.513]> 

<[0.490,0.563],[0.300,
0.381],[0.350,0.422]> 

 C7 C8 C9 C10 C11  

C1 
<[0.404,0.500],[0.336,
0.436],[0.377,0.472]> 

<[0.577,0.672],[0.204,
0.300],[0.200,0.295]> 

<[0.454,0.545],[0.295,
0.390],[0.331,0.422]> 

<[0.263,0.354],[0.445,
0.545],[0.531,0.622]> 

<[0.259,0.345],[0.463,
0.563],[0.550,0.636]>  

C2 
<[0.336,0.427],[0.390,
0.490],[0.454,0.545]> 

<[0.568,0.663],[0.204,
0.300],[0.204,0.300]> 

<[0.363,0.445],[0.386,
0.481],[0.450,0.531]> 

<[0.231,0.309],[0.500,
0.600],[0.595,0.672]> 

<[0.213,0.300],[0.500,
0.600],[0.600,0.686]>  

C3 
<[0.440,0.527],[0.313,
0.409],[0.354,0.440]> 

<[0.495,0.581],[0.272,
0.363],[0.304,0.390]> 

<[0.354,0.445],[0.372,
0.472],[0.431,0.522]> 

<[0.350,0.436],[0.390,
0.490],[0.450,0.536]> 

<[0.381,0.472],[0.354,
0.454],[0.404,0.495]>  

C4 
<[0.540,0.636],[0.222,
0.318],[0.231,0.327]> 

<[0.572,0.663],[0.200,
0.290],[0.209,0.300]> 

<[0.522,0.618],[0.240,
0.336],[0.254,0.350]> 

<[0.386,0.481],[0.336,
0.436],[0.386,0.481]> 

<[0.295,0.390],[0.409,
0.509],[0.486,0.581]>  

C5 
<[0.436,0.527],[0.313,
0.409],[0.354,0.445]> 

<[0.654,0.736],[0.154,
0.236],[0.154,0.236]> 

<[0.345,0.445],[0.372,
0.472],[0.431,0.531]> 

<[0.300,0.372],[0.454,
0.545],[0.545,0.618]> 

<[0.322,0.400],[0.422,
0.518],[0.500,0.577]>  

C6 
<[0.709,0.781],[0.131,
0.209],[0.122,0.195]> 

<[0.668,0.745],[0.150,
0.227],[0.154,0.231]> 

<[0.500,0.590],[0.259,
0.354],[0.281,0.372]> 

<[0.572,0.663],[0.200,
0.290],[0.209,0.300]> 

<[0.404,0.472],[0.377,
0.463],[0.445,0.513]>  

C7 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.722,0.800],[0.113,
0.190],[0.100,0.177]> 

<[0.654,0.736],[0.159,
0.245],[0.150,0.231]> 

<[0.654,0.727],[0.168,
0.245],[0.177,0.250]> 

<[0.413,0.500],[0.331,
0.427],[0.381,0.468]>  

C8 
<[0.754,0.836],[0.081,
0.163],[0.050,0.131]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.654,0.745],[0.145,
0.236],[0.127,0.218]> 

<[0.500,0.590],[0.259,
0.354],[0.281,0.372]> 

<[0.445,0.545],[0.281,
0.381],[0.313,0.413]>  

C9 
<[0.654,0.745],[0.145,
0.236],[0.127,0.218]> 

<[0.700,0.790],[0.109,
0.200],[0.077,0.168]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.618,0.709],[0.163,
0.254],[0.159,0.250]> 

<[0.454,0.545],[0.295,
0.390],[0.331,0.422]>  

C10 
<[0.563,0.636],[0.245,
0.327],[0.272,0.345]> 

<[0.595,0.672],[0.209,
0.290],[0.227,0.304]> 

<[0.668,0.745],[0.154,
0.236],[0.150,0.227]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.704,0.763],[0.154,
0.218],[0.172,0.231]>  

C11 
<[0.518,0.609],[0.240,
0.336],[0.259,0.350]> 

<[0.581,0.663],[0.218,
0.309],[0.222,0.304]> 

<[0.490,0.572],[0.286,
0.372],[0.327,0.409]> 

<[0.690,0.754],[0.159,
0.227],[0.172,0.236]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]>  

 

Following this procedure, the matrix given in Table 5 was deneutrosophicated by 

applying Eq. (2–3), resulting in the matrix shown in Table 6. Subsequently, Eq. (3–4) was 

applied to this deneutrosophicated matrix to reveal the final causal relationships among the 

criteria set, resulting the Total Relation Matrix of the RES Criteria Set, which is given in Table 

7. 

To determine the presence or absence of causal influence among criteria set, a threshold 

value is calculated by taking the arithmetic mean of all elements in the total relation matrix. 

Cells with values exceeding this threshold indicate the existence of a significant causal 

relationship between the corresponding pair of criteria. The threshold value can be adjusted 

upward or downward, depending on expert opinion or depending on whether a more restrictive 

or more inclusive set of criterion relationships is desired. 

In this study, the threshold was determined to be 0.543. All cells exceeding this value 

are highlighted in bold. These bold-marked entries indicate that the criterion represented in the 

row exerts an influence on the criterion represented in the corresponding column. For instance, 

criterion C1 has an influence on criteria C6 and C8. Conversely, when examining the influences 

acting upon C1, only criterion C8 exceeds the threshold and therefore demonstrates an impact 

on C1. 

Moreover, for columns in which no value exceeds the threshold value, the highest value 

in that column is selected to ensure that the ANP computations yield a valid result and that no 

criterion is inadvertently excluded from the analysis. In this study, since no value above 0.543 

was identified in the columns corresponding to criteria C4 and C11, the highest entries -0.530 

in the C4 column (located in the C8 row) and 0.483 in the C11 column (also located in the C8 

row)- were selected. This implies that criterion C8 exerts influence on both C4 and C11. 

Because no other criterion exhibits a significant effect in these columns, a value of 1 will be 

assigned to these specific cells in the ANP matrix, while all other cells in the same columns 

will be assigned a value of 0. 

 

Table 6. Combined Deneutrosophicated Direct Relation Matrix RES Criteria Set. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 0.000 0.749 0.619 0.643 0.642 0.589 0.496 0.675 0.539 0.367 0.361 

C2 0.657 0.000 0.744 0.626 0.593 0.570 0.429 0.664 0.447 0.333 0.325 

C3 0.440 0.539 0.000 0.564 0.631 0.653 0.523 0.575 0.445 0.439 0.471 

C4 0.680 0.784 0.681 0.000 0.730 0.691 0.633 0.660 0.613 0.477 0.395 
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C5 0.648 0.722 0.692 0.647 0.000 0.723 0.521 0.736 0.443 0.387 0.408 

C6 0.567 0.660 0.609 0.464 0.605 0.000 0.791 0.743 0.586 0.660 0.474 

C7 0.529 0.517 0.478 0.379 0.495 0.803 0.000 0.809 0.745 0.725 0.496 

C8 0.636 0.784 0.771 0.543 0.582 0.889 0.860 0.000 0.756 0.586 0.537 

C9 0.598 0.558 0.586 0.496 0.468 0.680 0.756 0.812 0.000 0.712 0.539 

C10 0.488 0.481 0.630 0.513 0.485 0.653 0.631 0.667 0.751 0.000 0.756 

C11 0.379 0.375 0.504 0.455 0.455 0.556 0.605 0.667 0.564 0.750 0.000 

Table 7. Total Relation Matrix RES Criteria Set. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 0.404 0.539 0.531 0.467 0.492 0.559 0.511 0.579 0.490 0.437 0.391 

C2 0.471 0.421 0.524 0.447 0.467 0.534 0.482 0.554 0.459 0.414 0.370 

C3 0.437 0.484 0.420 0.431 0.463 0.536 0.486 0.536 0.543 0.422 0.384 

C4 0.535 0.589 0.585 0.423 0.545 0.623 0.574 0.630 0.452 0.492 0.432 

C5 0.505 0.553 0.557 0.482 0.424 0.595 0.532 0.606 0.495 0.455 0.411 

C6 0.510 0.561 0.564 0.474 0.517 0.520 0.583 0.627 0.531 0.506 0.434 

C7 0.495 0.533 0.537 0.454 0.494 0.612 0.472 0.624 0.541 0.506 0.430 

C8 0.567 0.629 0.637 0.530 0.565 0.692 0.645 0.591 0.602 0.544 0.483 

C9 0.517 0.553 0.565 0.481 0.505 0.614 0.584 0.640 0.459 0.517 0.447 

C10 0.492 0.530 0.557 0.472 0.495 0.596 0.556 0.609 0.543 0.415 0.464 

C11 0.431 0.466 0.490 0.420 0.444 0.529 0.501 0.551 0.473 0.466 0.326 

4.2. Calculating the Weights 

For the calculation of the criteria weights, the inter-criteria relationships obtained 

through the IVN-DEMATEL procedure and given in Table 7 are utilized. For each criterion, a 

pairwise comparison is conducted among the criteria that exert influence on it, and the degree 

of this influence is assessed using the linguistic evaluations given in Table 4. This comparison 

process is performed separately for every criterion in order to construct the corresponding 

comparison matrices. 

Subsequently, the operations described in Section 3.3.2 are applied to each comparison 

matrix, generating the respective priority vectors. These vectors are then placed column by 

column into the ANP supermatrix, but only in the cells representing the intersections of criteria 

that share a causal relationship according to the IVN-DEMATEL results. For intersections 

between criteria that do not exhibit a relationship, an IVN value of the form <
[0.000,0.000], [1.000,1.000], [1.000,1.000] > is assigned to the corresponding cells, ensuring 

that unrelated criteria do not contribute to the weighting structure. 

Finally, the IVN supermatrix obtained through the previous steps is deneutrosophicated 

and its limit is computed. This limiting process gives the Global Weights, which are reported 

in the final column of the matrix in Table 8. These global weights represent the overall 

importance of each criterion within the decision-making framework and serve as the criteria 

weights to be used in subsequent evaluation stages. Each value in the last column corresponds 

to the importance of the criterion located in the same row, thus providing the final priority 

structure necessary for the multi-criteria assessment. 

 

Table 8. IVN Supermatrix and Global Weights of RES Criteria Set. 
 C1 C2 C3 C4 C5 C6 

C1 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.247,0.253],[0.032,

0.026],[0.028,0.023]> 

C2 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

C3 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

C4 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.393,0.413],[0.050,

0.041],[0.045,0.038]> 

<[0.350,0.341],[0.025,

0.022],[0.024,0.022]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.468,0.475],[0.546,

0.534],[0.540,0.531]> 

<[0.119,0.117],[0.140,

0.144],[0.145,0.150]> 
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C5 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.234,0.224],[0.130,

0.133],[0.133,0.136]> 

<[0.157,0.152],[0.135,

0.146],[0.149,0.161]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.111,0.114],[0.154,

0.156],[0.156,0.157]> 

C6 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.164,0.158],[0.238,

0.264],[0.258,0.282]> 

<[0.150,0.148],[0.151,

0.160],[0.161,0.170]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

C7 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.157,0.145],[0.095,

0.103],[0.102,0.108]> 

C8 
<[1.000,1.000],[0.000,
0.000],[0.000,0.000]> 

<[0.150,0.146],[0.151,

0.148],[0.152,0.150]> 

<[0.124,0.125],[0.225,

0.218],[0.218,0.209]> 

<[1.000,1.000],[0.000,
0.000],[0.000,0.000]> 

<[0.532.0.525].[0.454.

0.466].[0.460.0.469]> 

<[0.124,0.122],[0.141,

0.145],[0.145,0.148]> 

C9 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.058,0.059],[0.431,

0.413],[0.411,0.394]> 

<[0.090,0.101],[0.276,

0.261],[0.257,0.245]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.106,0.114],[0.249,

0.237],[0.235,0.225]> 

C10 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.129,0.133],[0.189,

0.193],[0.191,0.193]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.135,0.135],[0.189,

0.189],[0.189,0.188]> 

C11 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

 C7 C8 C9 C10 C11 Global Weights 

C1 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.212,0.232],[0.028,
0.021],[0.023,0.018]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0696 

C2 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.213,0.200],[0.025,
0.025],[0.025,0.025]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0575 

C3 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.261,0.246],[0.350,
0.353],[0.362,0.365]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0143 

C4 
<[0.378,0.387],[0.048,
0.040],[0.044,0.037]> 

<[0.142,0.134],[0.042,
0.041],[0.042,0.041]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.1260 

C5 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.097,0.092],[0.108,
0.118],[0.118,0.127]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0648 

C6 
<[0.083,0.078],[0.262,
0.266],[0.273,0.280]> 

<[0.043,0.044],[0.167,
0.168],[0.170,0.171]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0530 

C7 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.093,0.089],[0.086,
0.094],[0.093,0.099]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0527 

C8 
<[0.227,0.212],[0.154,
0.159],[0.160,0.162]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.419,0.421],[0.355,
0.374],[0.362,0.376]> 

<[1.000,1.000],[0.000,
0.000],[0.000,0.000]> 

<[1.000,1.000],[0.000,
0.000],[0.000,0.000]> 0.3969 

C9 
<[0.141,0.152],[0.343,
0.342],[0.332,0.331]> 

<[0.066,0.069],[0.192,
0.189],[0.187,0.184]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0524 

C10 
<[0.171,0.171],[0.194,
0.192],[0.192,0.189]> 

<[0.074,0.075],[0.134,
0.136],[0.135,0.137]> 

<[0.320,0.333],[0.295,
0.273],[0.276,0.259]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0801 

C11 
<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.061,0.065],[0.218,
0.208],[0.207,0.198]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 

<[0.000,0.000],[1.000,
1.000],[1.000,1.000]> 0.0327 

 

4.3. Evaluating the RES Alternatives 

After identifying the interrelationships among the criteria through IVN-DEMATEL 

method and obtaining the criteria weights via the IVN-ANP procedure, the evaluation and 

ranking of RES alternatives using the IVN-TOPSIS approach are carried out in this section. 

Based on these previous steps, an IVN decision matrix is constructed to represent the 

performance of each RES alternative with respect to the evaluation criteria. 

The IVN Decision Matrix of RES Evaluations are given in detail in Table 9. This 

decision matrix not only forms the basis for the following IVN-TOPSIS computation but also 

enables a direct interpretation of how each RES alternative performs under each criterion. By 

examining the values across the matrix, researchers and decision-makers can identify which 

RES alternative exhibits superior characteristics for a particular criterion and can therefore 

conduct a criterion-focused comparative assessment. 

For instance, under criterion C5 (Transmission Efficiency), the Hydroelectric Energy 

alternative displays values that are significantly higher than those of the other RES alternatives. 

If this criterion carries substantial importance within the decision, it becomes highly reasonable 

that Hydroelectric Energy would emerge as the top-ranked alternative in the final IVN-TOPSIS 

results. Similar interpretive evaluations can be performed for the other criteria and RES 

alternatives, enabling a more detailed understanding of how each criterion influences the overall 

ranking. 

 

Table 9. IVN Decision Matrix of RES Evaluations. 
 C1 C2 C3 C4 C5 C6 

SE 
<[0.096,0.107],[0.218,
0.236],[0.236,0.255]> 

<[0.228,0.235],[0.144,
0.148],[0.149,0.152]> 

<[0.193,0.212],[0.096,
0.101],[0.106,0.112]> 

<[0.112,0.115],[0.242,
0.253],[0.250,0.260]> 

<[0.112,0.115],[0.287,
0.296],[0.294,0.301]> 

<[0.327,0.333],[0.141,
0.159],[0.155,0.173]> 

WE 
<[0.068,0.069],[0.449,
0.452],[0.442,0.442]> 

<[0.115,0.119],[0.357,
0.360],[0.356,0.360]> 

<[0.248,0.261],[0.240,
0.242],[0.235,0.235]> 

<[0.095,0.096],[0.311,
0.324],[0.302,0.313]> 

<[0.064,0.066],[0.343,
0.351],[0.335,0.343]> 

<[0.349,0.357],[0.058,
0.058],[0.060,0.061]> 

HE 
<[0.278,0.283],[0.076,
0.080],[0.076,0.079]> 

<[0.288,0.299],[0.073,
0.074],[0.076,0.078]> 

<[0.256,0.265],[0.106,
0.109],[0.113,0.117]> 

<[0.443,0.443],[0.029,
0.032],[0.029,0.032]> 

<[0.471,0.472],[0.027,
0.029],[0.027,0.029]> 

<[0.140,0.145],[0.189,
0.197],[0.197,0.203]> 

GE 
<[0.439,0.459],[0.040,
0.047],[0.037,0.043]> 

<[0.286,0.288],[0.058,
0.064],[0.056,0.062]> 

<[0.134,0.152],[0.344,
0.355],[0.329,0.339]> 

<[0.147,0.155],[0.291,
0.293],[0.289,0.289]> 

<[0.147,0.154],[0.217,
0.218],[0.216,0.216]> 

<[0.083,0.094],[0.396,
0.411],[0.375,0.390]> 

BE 
<[0.098,0.103],[0.196,
0.205],[0.190,0.200]> 

<[0.070,0.072],[0.361,
0.362],[0.354,0.357]> 

<[0.137,0.142],[0.203,
0.204],[0.206,0.208]> 

<[0.195,0.199],[0.110,
0.114],[0.116,0.120]> 

<[0.199,0.200],[0.114,
0.117],[0.117,0.121]> 

<[0.084,0.088],[0.191,
0.202],[0.189,0.198]> 
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 C7 C8 C9 C10 C11  

SE 
<[0.114,0.116],[0.274,
0.284],[0.261,0.273]> 

<[0.248,0.255],[0.128,
0.137],[0.137,0.145]> 

<[0.165,0.169],[0.192,
0.194],[0.196,0.197]> 

<[0.243,0.254],[0.126,
0.131],[0.132,0.136]> 

<[0.208,0.211],[0.176,
0.179],[0.178,0.179]>  

WE 
<[0.278,0.285],[0.159,
0.180],[0.176,0.195]> 

<[0.247,0.252],[0.173,
0.185],[0.183,0.193]> 

<[0.223,0.227],[0.195,
0.197],[0.197,0.197]> 

<[0.214,0.218],[0.181,
0.191],[0.187,0.195]> 

<[0.258,0.259],[0.170,
0.183],[0.180,0.192]>  

HE 
<[0.255,0.262],[0.136,
0.147],[0.149,0.161]> 

<[0.150,0.151],[0.182,
0.188],[0.183,0.186]> 

<[0.184,0.192],[0.226,
0.228],[0.224,0.225]> 

<[0.149,0.151],[0.221,
0.222],[0.220,0.221]> 

<[0.235,0.236],[0.108,
0.115],[0.103,0.109]>  

GE 
<[0.180,0.191],[0.211,
0.226],[0.201,0.213]> 

<[0.173,0.184],[0.275,
0.289],[0.262,0.274]> 

<[0.169,0.181],[0.254,
0.262],[0.245,0.252]> 

<[0.171,0.179],[0.258,
0.274],[0.244,0.258]> 

<[0.136,0.140],[0.311,
0.318],[0.303,0.310]>  

BE 
<[0.158,0.160],[0.188,
0.195],[0.182,0.189]> 

<[0.170,0.171],[0.221,
0.222],[0.217,0.221]> 

<[0.240,0.251],[0.122,
0.129],[0.130,0.137]> 

<[0.210,0.212],[0.197,
0.199],[0.203,0.206]> 

<[0.157,0.160],[0.220,
0.221],[0.223,0.224]>  

 

After applying Eqs. (10–11) using the decision matrix given in Table 9, the resulting 

matrix is further processed through Eqs. (12–13) to determine the values of 𝐴 
+ and 𝐴 

+. These 

values correspond to the Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS), 

respectively. In the following stage of the IVN-TOPSIS calculations, these ideal solution values 

serve as reference benchmarks. The distance of each RES alternative from the PIS and the NIS 

is computed to assess their relative closeness to the optimal solution, meaning how far an 

alternative is from NIS. This step is essential for generating the final performance scores and 

ranking the alternatives in a systematic and analytically rigorous manner. 

 

Table 10. IVN PIS and IVN NIS values of RES Evaluations. 

 𝑨 
+ 𝑨 

− 
C1 <[0.0542,0.0566],[0.0049,0.0058],[0.0046,0.0053]> <[0.0083,0.0085],[0.0560,0.0564],[0.0553,0.0553]> 

C2 <[0.0333,0.0345],[0.0061,0.0068],[0.0059,0.0066]> <[0.0081,0.0083],[0.0384,0.0385],[0.0380,0.0384]> 

C3 <[0.0076,0.0079],[0.0027,0.0028],[0.0030,0.0032]> <[0.0040,0.0042],[0.0098,0.0101],[0.0096,0.0099]> 

C4 <[0.1050,0.1050],[0.0070,0.0077],[0.0071,0.0078]> <[0.0225,0.0227],[0.0755,0.0787],[0.0739,0.0766]> 

C5 <[0.0553,0.0554],[0.0033,0.0035],[0.0033,0.0036]> <[0.0075,0.0077],[0.0425,0.0435],[0.0417,0.0427]> 

C6 <[0.0352,0.0360],[0.0058,0.0058],[0.0061,0.0062]> <[0.0083,0.0088],[0.0398,0.0413],[0.0385,0.0400]> 

C7 <[0.0308,0.0316],[0.0151,0.0163],[0.0167,0.0181]> <[0.0126,0.0128],[0.0305,0.0316],[0.0293,0.0307]> 

C8 <[0.2125,0.2185],[0.1080,0.1156],[0.1167,0.1236]> <[0.1285,0.1294],[0.2321,0.2439],[0.2233,0.2335]> 

C9 <[0.0272,0.0285],[0.0138,0.0146],[0.0148,0.0156]> <[0.0187,0.0192],[0.0287,0.0296],[0.0279,0.0287]> 

C10 <[0.0422,0.0442],[0.0216,0.0224],[0.0228,0.0235]> <[0.0259,0.0262],[0.0443,0.0470],[0.0422,0.0446]> 

C11 <[0.0183,0.0183],[0.0073,0.0078],[0.0070,0.0074]> <[0.0096,0.0099],[0.0212,0.0217],[0.0207,0.0212]> 

 

Table 11, titled Relative Closeness, Results, and Ranking of RES, listed the final 

outcomes of the evaluation process in a detailed manner. The second and third columns of the 

table report the 𝑑𝑖
+ and  𝑑𝑖

− values, which represent the distances of each alternative to PIS and 

NIS, respectively. These distances were computed using Eqs. (14–15). Following, the values in 

these two columns were incorporated into Eq. (16) to obtain the Relative Closeness (𝑅𝐶𝑖
 ) 

values, which are given in the fourth column. By ranking the 𝑅𝐶𝑖
  values in descending order, 

RES alternatives are ordered from the most preferable to the least preferable alternatives. 

Furthermore, to determine the preference percentages of RES alternatives, the best RES 

alternative is first assigned a value of 100%. The remaining alternatives are then scaled 

proportionally using their respective 𝑅𝐶𝑖
  values, yielding the percentage values given in the 

fifth column. The final rankings of all RES alternatives are listed in the last column. 

According to the proposed Interval-Valued Neutrosophic Fuzzy DEMATEL-ANP-

TOPSIS Framework, the most preferable RES alternative is Solar Energy. This is followed by 

Wind Energy as the second-best RES alternative, while Biomass Energy emerges as the least 

preferable RES alternative within the evaluated RES set under evaluated criteria set. 

 

Table 11. Relative Closeness, Results and Ranking of RES. 

 𝒅𝒊
+ 𝒅𝒊

− 𝑹𝑪𝒊
  % Ranking 

SE 0.0102 0.0446 0.8132 100 1 

WE 0.0132 0.0445 0.7707 95 2 
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HE 0.0100 0.0288 0.7427 91 3 

GE 0.0185 0.0324 0.6368 78 4 

BE 0.0147 0.0222 0.6013 74 5 

 

5. Visualization and Interpretation of the Results of RES Evaluations 

Figure 1 and Figure 2 given below present a comparative overview of the nine different 

results; eight obtained from the methods detailed in Section 2, Section 3.1, and Section 3.2, and 

one derived from This Study (TS). While Figure 1 illustrates the ranking results of the criteria 

set of RES alternatives, Figure 2 displays the ranking results of RES alternatives under each 

methodological approach. Together, these figures provide a holistic perspective on how 

different methodological configurations influence both criterion prioritization and alternative 

selection, thereby offering a richer basis for cross-method consistency analysis. 

A closer examination of the comparative rankings in Figure 1 reveals that the most 

influential criterion across nearly all methods is C8 (Technology Requirements). This 

consistent prominence suggests that technological feasibility and infrastructure readiness 

constitute a decisive factor in RES selection, regardless of the underlying decision-making 

model employed. The stability of this finding across methods further indicates that stakeholders 

tend to prioritize advanced technological attributes while evaluating contemporary energy 

solutions. 

Following C8, the second- and third-ranked criteria are C4 (Storability) and C10 

(Accident Risk and Effects), respectively in TS. The relatively high importance assigned to C4 

underscores the strategic emphasis placed on energy-storage capabilities, a domain that directly 

affects grid reliability and long-term sustainability. Similarly, the prominent ranking of C10 

highlights the growing societal concern regarding operational safety and the broader 

environmental and human impacts of renewable energy deployment. These two criteria together 

reflect a balance between functional reliability and risk minimization, both of which 

increasingly shape modern energy policies. 

Although intermediate ranking positions vary across the nine methods -reflecting the 

inherent methodological sensitivities and weighting dynamics- the majority of the results 

consistently identify C11 (Harms to Nature and Human) as the least significant criterion. This 

recurring pattern may indicate that, within the context of RES technologies, decision-makers 

perceive environmental and human harm impacts as comparatively lower or already sufficiently 

mitigated relative to other criteria. Alternatively, it may imply that such impacts are viewed as 

more uniform across alternatives, thereby reducing their discrimination power within the 

decision framework. Nevertheless, this finding highlights an important area for further 

investigation, particularly in policy contexts where environmental sensitivity is expected to play 

a more dominant role. 
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Figure 1. Comparison of Criteria Set Ranking Results of RES Evaluations with 9 Methods. 

 

Figure 2, which presents the rankings of RES alternatives across nine different methods, 

reveals that Solar Energy consistently emerges as the top-performing alternative in nearly all 

approaches. This convergence across multiple decision-making frameworks underscores the 

robustness of Solar Energy’s performance profile, suggesting that its advantages -such as high 

availability, scalability, and rapidly decreasing technological costs- are widely captured 

regardless of methodological differences. The recurring identification of Solar Energy as the 

most favorable alternative also highlights the strong alignment of this alternative with 

contemporary energy policies emphasizing sustainability and low-carbon solutions. 

Furthermore, Wind Energy is identified as the second best RES alternative by the 

majority of the methods, indicating its stable performance and relatively balanced trade-offs 

across RES evaluation criteria set. The persistence of Wind Energy in top rankings suggests 

that, while not as dominant as Solar Energy, it maintains a competitive advantage due to its 

technological maturity, widespread applicability, and relatively favorable environmental 

footprint. This consistency also points to the fact that criteria such as storability, accident risks, 

and technological requirements -each weighted differently across methods- affect Wind Energy 

less variably compared to other RES alternatives. 

In contrast, the least preferred RES option is generally observed to be Geothermal 

Energy in most of the compared approaches. This recurring result may stem from limitations 

such as high initial investment costs, geographic dependency, and potential concerns regarding 

environmental impacts like induced seismicity. Interestingly, however, the proposed Interval-

Valued Neutrosophic DEMATEL–ANP–TOPSIS Framework identifies Biomass Energy as the 

least desirable alternative, diverging from the other methods. This deviation highlights the 

methodological sensitivity of certain alternatives and suggests that Biomass Energy, when 

evaluated through the more detailed uncertainty representation of IVN numbers, may exhibit 

weaker performance under criteria such as environmental harm (C11) or technology 

requirements (C8). Such a finding offers a valuable perspective: while traditional methods may 

overlook certain deficiencies due to limited uncertainty modeling, the proposed framework may 

expose latent weaknesses, thereby presenting a more conservative and arguably more realistic 

evaluation of Biomass Energy. 
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Overall, the comparative analysis provided by Figure 2 demonstrates not only the 

general stability of rankings across different MCDM techniques but also the capacity of the 

proposed approach to reveal alternative insights, particularly in the lower tiers of performance. 

This contributes to a more comprehensive understanding of RES prioritization and emphasizes 

the importance of incorporating advanced uncertainty-handling mechanisms in complex energy 

planning problems. 

 

 
Figure 2. Comparison of Alternative Ranking Results of RES Evaluations with 9 Methods. 

 

6. Discussions and Conclusions 

This study provides a comprehensive and methodologically rigorous assessment of 

fuzzy-based multi-criteria decision-making (MCDM) approaches for renewable energy source 

(RES) selection. By benchmarking several established fuzzy MCDM methods on a common 

dataset and subsequently introducing a novel hybrid Interval-Valued Neutrosophic Fuzzy 

DEMATEL–ANP–TOPSIS framework, the research makes significant theoretical and practical 

contributions to the decision-making literature under uncertainty. The findings strengthen our 

understanding of how different fuzzy models interpret ambiguity, manage expert hesitation, 

and model interrelationships among criteria, all of which are critical in complex planning 

environments such as renewable energy transitions. 

From a theoretical standpoint, the study advances MCDM research in several key areas. 

First, it demonstrates that fuzzy-based approaches do not behave uniformly; their ranking 

outcomes, sensitivity profiles, and weighting dynamics diverge due to their inherent 

mathematical mechanisms. For instance, distance-based models such as fuzzy TOPSIS exhibit 

different decision tendencies compared with compromise-based methods like fuzzy VIKOR, 

while hierarchical methods (fuzzy AHP) differ fundamentally from network-structured 

approaches (fuzzy ANP). Second, the study highlights the strengths of interval-valued 

neutrosophic fuzzy sets, which provide a richer representation of expert cognition by 

incorporating truth-membership, indeterminacy-membership and falsity-membership degrees. 

This creates a more granular modelling structure that surpasses the expressive capabilities of 

classical fuzzy logic. Third, by integrating interval-valued neutrosophic fuzzy DEMATEL, 

ANP, and TOPSIS into a unified framework, the study contributes a theoretically sound hybrid 

architecture that captures causal relationships, interdependencies, and ranking robustness 

simultaneously; an aspect rarely addressed in earlier research. 
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The practical implications of the study are equally noteworthy. Renewable energy 

planning involves complex and often politically sensitive decisions in which experts from 

different backgrounds must evaluate competing alternatives using heterogeneous information. 

The benchmarking results offer stakeholders a clear understanding of how each fuzzy MCDM 

method behaves under uncertainty, which can help energy authorities choose the most 

appropriate analytical tool depending on the decision context. For example, planning scenarios 

requiring strong causal clarity may prefer DEMATEL-based approaches, whereas scenarios 

requiring a robust overall ranking through alternative distances may benefit from fuzzy 

TOPSIS. The proposed interval-valued neutrosophic hybrid model strengthens decision 

integrity by combining causal mapping with interdependent weighting and transparent ranking, 

making it especially useful for policy development, long-term investment planning, and multi-

stakeholder negotiations. Its structured and intuitive framework can support national energy 

agencies, regional development authorities, and private sector investors seeking to prioritize 

renewable energy projects under uncertain evaluation environments. 

While the study contributes meaningful methodological innovations, it also 

acknowledges several limitations. The dataset, although carefully selected, represents a specific 

case context and a fixed set of criteria. In real-world settings, the importance of criteria may 

vary significantly across countries, climatic conditions, and socio-economic structures. 

Additionally, although interval-valued neutrosophic fuzzy logic enhances uncertainty 

modelling, the computational effort required for hybridized interval-valued neutrosophic 

systems increases with the number of criteria and alternatives. This complexity may pose 

challenges for practitioners lacking computational expertise or specialized software. 

Furthermore, the benchmarking does not include other emerging fuzzy paradigms such as 

picture fuzzy, hesitant, spherical or q-rung orthopair fuzzy sets, which could potentially provide 

alternative interpretations of expert hesitation. These limitations highlight opportunities for 

methodological refinement in follow-up studies. 

A comparison with related literature shows that while numerous studies have applied 

singular fuzzy MCDM methods or simple hybrid approaches to RES decision-making, few have 

pursued a systematic benchmarking of multiple fuzzy methods under identical conditions. Even 

fewer studies combine causal modelling, interdependent weighting, and interval-valued 

neutrosophic fuzzy logic in a single framework. The present study differentiates itself by filling 

these gaps, offering a deeper cross-methodological insight that allows researchers and 

practitioners to understand not only which technique ranks alternatives differently, but also why 

those differences occur. In doing so, it situates itself as a methodological bridge between 

classical fuzzy MCDM research and next-generation uncertainty modelling techniques. 

The key findings of the study can be summarized as follows. First, significant variability 

exists among the ranking outcomes of major fuzzy MCDM methods, reflecting their structural 

differences. Second, hybrid models demonstrate superior capability in capturing the 

multidimensional and interdependent nature of RES criteria. Third, the proposed Interval-

Valued Neutrosophic Fuzzy DEMATEL-ANP-TOPSIS Framework enhances decision 

robustness, provides deeper causal and relational insights, and delivers more stable rankings 

than standalone techniques. These findings validate the methodological value of integrating 

causal mapping, network-based weighting, and distance-based ranking under interval-valued 

neutrosophic fuzzy environments. 

Based on these findings, several policy and decision-making recommendations emerge. 

Energy planners should adopt decision frameworks that explicitly account for uncertainty, 

particularly during early-stage feasibility assessments where data incompleteness and expert 

disagreement are common. Governments and regulatory bodies are encouraged to support 

analytical training and software deployment for hybrid MCDM techniques, allowing for more 
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evidence-based energy investment decisions. The hybrid model proposed in this study can be 

integrated into energy planning institutions as a decision-support tool to systematically evaluate 

RES portfolios. Additionally, decision-makers should consider complementing quantitative 

outputs from hybrid MCDM models with qualitative stakeholder insights to ensure policy 

legitimacy and social acceptance. 

Future research directions are rich and varied. One promising is the incorporation of 

more advanced fuzzy environments, such as spherical fuzzy, neutrosophic, Pythagorean fuzzy, 

or q-rung orthopair fuzzy sets, which could provide even more flexible uncertainty modelling 

structures. Another involves integrating machine learning techniques with MCDM 

frameworks—for instance, using ML models to predict criteria weights, identify hidden causal 

patterns, or automate sensitivity analyses. Expanding the study across different geographical 

regions, applying dynamic decision-making models that adjust over time, or incorporating 

climate risk variables could further enhance the generalizability and policy relevance of the 

proposed framework. Finally, decision support systems and software platforms that 

operationalize the hybrid interval-valued neutrosophic fuzzy model could significantly 

strengthen its practical adoption in energy planning environments. 

In conclusion, this study offers a comprehensive benchmarking of fuzzy-based MCDM 

approaches and proposes a robust hybrid interval-valued neutrosophic framework that advances 

both the theory and practice of RES decision-making. By integrating causal, relational, and 

ranking mechanisms within an uncertainty-sensitive structure incorporating truth-membership, 

indeterminacy-membership and falsity-membership degrees, the research provides valuable 

tools and insights for guiding sustainable energy transitions on local, national, and global scales. 

 

Author’s Note: This study was derived from the thesis of Çelikbilek (2016) (Thesis id: 398616) 

by using the dataset presented in the original thesis. 
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