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ABSTRACT

Large Language Models (LLMs) are the cornerstone of modern Al systems capable of humanlike reasoning,
language understanding, and text generation. Their success relies not only on deep learning architectures but also
on a comprehensive statistical foundation. This article provides an extensive examination of statistical techniques
underlying LLMs, including probability theory, statistical learning theory, Bayesian inference, Markov chains, the
Expectation—Maximization algorithm (EM), dimensionality reduction (PCA, SVD), probabilistic graphical
models, variational inference, and sampling methods such as MCMC. It further explains how these methods are
integrated within the Transformer architecture and contemporary LLM training pipelines. Applications in natural
language processing, healthcare, finance, and law are also explored in detail.
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ISTATISTIKSEL YONTEMLERIN YENIi BAHARI: BUYUK DIL
MODELLERI (BDM)

OZET

Biiyiik dil modelleri (LLM’ler), giiniimiiz yapay zeka uygulamalarinin merkezinde yer alan ve insan benzeri dil
iiretme, anlama, akil yiiriitme kabiliyetleriyle dikkat ¢eken derin 6grenme sistemleridir. Bu modellerin bagarisinin
temelinde yalmzca derin sinir aglar1 degil, ayn1 zamanda giiglii bir istatistiksel altyap1 bulunmaktadir. Bu makale,
LLM’lerin ardindaki olasilik teorisi, istatistiksel grenme kurami, Bayesci yontemler, Markov zincirleri, beklenti—
maksimizasyon algoritmasi (EM), boyut indirgeme (PCA, SVD), olasiliksal grafik modeller, varyasyonel ¢ikarim
ve ornekleme yontemleri (MCMC) gibi tiim temel istatistiksel teknikleri kapsamli bir big¢imde ele almaktadir.
Ayrica bu tekniklerin Transformer mimarisi ve modern LLM egitim siireclerinde nasil kullanildig1 ayrintili olarak
gosterilmigstir. Makale, dogal dil isleme, saglik, finans, hukuk gibi alanlarda LLM tabanl istatistiksel modellerin
uygulamalarini da 6rneklerle incelemektedir.

Anahtar Kelimeler: Biiyiik Dil Modelleri, Istatistiksel Ogrenme, Bayesci Cikarim, Transformer, EM Algoritmast,
PCA, SVD

JEL Smmiflandirmasi: C45, C38, C55, C63
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1 — Dilin Olasiliksal Temeli ve Bilgi Teorisi (Yeniden Yazim)
Biiyiik dil modelleri, dilin i¢sel belirsizligini matematiksel bir yapiya oturtarak, kelimeleri ve
ciimleleri olasiliksal bir siire¢ cercevesinde temsil eder. Insan dili, deterministik bir yapidan
cok, tarihsel, kiiltiirel ve baglamsal etkilerin sekillendirdigi genis bir olasilik uzayinda
yasamaktadir. Bu nedenle modern dil modelleri, dile iliskin temel varsayimi1 su sekilde kurar:
Her kelime dizisi, bir olasilik dagilimindan ¢ekilmis rastgele bir 6rnektir. Dolayisiyla bir dil
modeli, aslinda dilin bu olasilik dagilimini tahmin etmeye calisan bir fonksiyondur. Eger bir
kelime dizisini W=(wz1,ws,...,w) olarak yazarsak, model bu dizinin ger¢eklesme olasiligini su
sekilde ifade eder:

P(W) = P(wy, Wy, ..., wr)
Olasilik zincir kurali, dil modellemenin temel yap1 tasini olusturur ve bu diziyi ardisik kosullu
olasiliklarin ¢carpimi seklinde yeniden yazmamizi saglar:

pow) =] | Pove 1 wie )
t=1

Aslinda bu formiil, dil modelinin bir "tahmin makinesi" olarak davranmasinin matematiksel
yansimasidir. Insan nasil bir ciimlenin devamini sezgisel olarak tahmin ediyorsa, model de
gecmis sozciikleri “baglam” olarak kabul eder ve siradaki kelimenin olasiligini hesaplar.

Bu yaklasim dilin olasiliksal dogasina dayanmir. Ornegin * ifadesinden sonra
“glizel” kelimesi, “bisiklet” kelimesine kiyasla ¢ok daha yiiksek bir kosullu olasiliga sahiptir.
Ciinkli baglamin sagladigi bilgi, sonraki kelimenin dagilimimni daraltarak belirsizligi azaltir.
LLM’lerin yaptig1 tam olarak budur: Dagilimlar1 6grenir, belirsizligi minimize eder ve baglama

2
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uygun sozciikleri yiiksek olasilikla secer.
1.1 Olasiik Dagilimlarinin Dil Modellemesindeki Roll
Bir biiyiik dil modelinin ¢iktis1 aslinda tek bir kelime degildir; kelimelerin bulundugu sozliik
iizerinde tanimlanan bir ihtimal dagilimidir. Model, her bir kelime i¢in bir say1 iiretir ve bunlari
“logit” olarak adlandirir. Bu logit degerleri softmax fonksiyonundan gegirilerek normalize
edilir:

e’
Yj e’

Bu ifade, modelin bir sonraki kelime i¢in olusturdugu kategorik dagilimdir. Kategorik dagilim,

P(w, =1i) =

kelime se¢iminin ardinda yatan rastgele siirecin en yalin matematiksel kargiligidir ¢tinki tek bir
denemede ¢ok kategorili bir sonug iiretir. Dilin iiretilisi de bir yoniiyle boyle isler; bir sonraki
sozciik tek bir secenektir, fakat aday havuzu ¢ok genistir.

Bir adim daha yukarida, ¢oknomlu dagilim dil modellerinin mini-batch egitim siireclerinde
karsimiza ¢ikar. Cok sayida ciimle ayni anda islendiginde, o baglamda tiireyen kelime
frekanslar1 aslinda ¢coknomlu dagilimi takip eder. Bu tiir istatistiksel iliskiler, modelin neden
bazi kelimelere daha fazla yogunlastigini anlamamizi saglar.

Dil modellemede sik kullanilan bir diger dagilim Normal (Gauss) dagilimidir. Ozellikle gomulii
(embedding) uzaylarinin matematiksel yapisi ¢ogu zaman Normal (Gaussiyen) davraniglara
yaklagir. Yiiksek boyutlu semantik uzayda kelime vektorlerinin kiimelenme egilimleri, anlam
yakinliklarinin Gauss (Normal) dagilimi {izerinden modellenmesini kolaylastirir. Bir kelime
embedding'i (g6mulu boyutu) ¢ogu zaman soyle ifade edilir:
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x ~N(wX)
Bu ifade, kelimelerin anlamlarinin tek bir noktaya indirgenemeyecegini, aksine bir belirsizlik
bolgesi olarak temsil edilmesi gerektigini anlatir.
1.2 Bilgi Teorisi: Dilin Matematiksel Karmasikhgi
Dilin igsel karmasikligimi 6lgmek i¢in bilgi teorisi kullanilir. Claude Shannon’in gelistirdigi
entropi kavrami, bir rasgele degiskenin ne kadar belirsizlige sahip oldugunu matematiksel
olarak ifade eder. Eger dildeki kelimelerin olasilik dagilimini P(x) ile gosterirsek, entropi su
sekilde hesaplanir:

H(X) = —Z P(x)log P(x)

Her dilin kendine 6zgii bir entropisi vardir. Ornegin Tiirkge'de baz1 eklerin sik kullanilmast,
Ingilizce’de kelime sirasmin daha sinirh bir sekilde kurulmasi, Japonca’da ciimlenin fiille
sonlanmasi gibi kurallar dogal entropiyi degistirir. Dil modelleri bu entropiyi dolayli olarak
Ogrenir.

LLM’lerin egitiminde kullanilan temel kayip fonksiyonu ¢apraz entropidir:

T
L==)" logPy(w, | wey)
t=1

Bu ifade, modelin dagilimi ile gercek dagilim arasindaki uzakligi 6lcer. Eger model dogru
tahmin yapiyorsa kayip azalir, yanlis kelimelere yliksek olasilik veriyorsa kayip yiikselir.
Egitim siireci bu kayb1 minimize etmeye ¢alisir ve bdylece model giderek daha tutarh bir dil
dagilim1 6grenir.

Performansi gostermek igin geleneksel 6l¢i "perplexity"dir:

T

Perplexity = exp —%Z log P(w; | wee)

t=1

Perplexity dilin belirsizligini temsil eden sezgisel bir dl¢iidiir. Diisiik perplexity (saskinlik,
karisiklik, tereddiit) daha iyi tahmin giicii anlamma gelir. Insan dil yetenegini olgseydik
muhtemelen benzer bir metrik kullanirdik; ¢iinkii insan beyni de baglam iizerinden olasilik
tahminleri yapar.
1.3 Olasihigin Gorsel Bir Tasviri
Bu kavramlarin tiimii, asagidaki gibi basit bir semada gorsellestirilebilir:

o

Plw) P{w;) Pw;w) Plw,)

P(w,) ceerey iy )

Bu ¢izim yalnizca ardisikligi gostermiyor; ayni1 zamanda ge¢misten gelecege aktarilan bilginin
matematiksel temsili oldugunu da hatirlatiyor. insan zihni de ciimleleri bu sekilde kurar;
kelimeler birbirlerinin agirlikli olasiliklarini belirler ve anlam zaman i¢inde akarak olusur.
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1.4 Softmax’1in Gorsel Anlatimi
Bir modelin logitlerini olasiliklara doniistiirme siireci de su sekilde diisiiniilebilir:

Logit vektéru
2,3, [-1,1,0,7,4,9

I

softmax

|

Olasiliklar
0,07, 0,01, 0,03,0

Bu 6rnek, modelin biiyiik olasilikla “dordiincii kelimeyi” segecegini gosterir. Ancak se¢im
deterministik degildir; dilin biiyiisii burada yatar. LLM’ler, anlam iiretmek i¢in olasilik
dagilimin kullanir, rastlantisallikla yaraticilik arasinda denge kurar.

1.5 Embedding (Gomull) Uzayinin Estetigi

Yiiksek boyutlu embedding uzaylarinda kelimeler adeta bir anlam manzaras1 olusturur:

2

Bu basit ¢izim, kelimelerin rastgele dagilmadigini, semantik olarak iligkili kelimelerin birbirine
yakin kiimelendigini hatirlatir. LLM’ler bu geometrik isaretleri kullanarak anlam ¢ikarir.

2 — Istatistiksel (")grenme Kurami: ERM, SRM, Taraflihk-Sistematik hata varyansi (Bias—
Variance) ve Diizenlilestirme

Buyiik dil modellerinin egitimi, ne kadar devasa veri ve parametre kullanirsa kullansin, 6ziinde
istatistiksel 0grenme kuraminin temel ilkelerine siki sikiya baglidir. Bu kuramin merkezinde,
modelin verilerden anlamli bir fonksiyon 6grenmesini miimkiin kilan iki 6nemli yaklasim
bulunur: Empirik Risk Minimizasyonu (ERM) ve Yapisal Risk Minimizasyonu (SRM).
LLM’lerin egitim slirecinin, ylizeyde karmasik sinir agr optimizasyonu gibi goriinmesine
ragmen, bu kuramsal temellerden nasil beslendigini géstermeye calisacagiz.

Dil modellemede amag, belirli bir modelin parametrelerini 6yle bir bicimde ayarlamaktir ki,
model 6nceden goriilmemis metinlerde dahi tutarli tahminler yapabilsin. Bu hedef genellikle
“genelleme” olarak adlandirilir ve genelleme basarisi, istatistiksel 6grenmenin omurgasini
olusturur.

2.1 Empirik Risk Minimizasyonu: Ogrenmenin En Saf Formu

Bir modelin egitimi sirasinda, elimizdeki veri kiimesini D = {(x;, y;)}i=; olarak diiiinelim.
Burada xj baglami (6rnegin cimlenin 6nceki kelimeleri), yi ise modelin tahmin etmeye ¢alistig
kelimedir. Dil modelinin egitimi, bu veri noktalar1 iizerinde bir kayip fonksiyonunun
ortalamasini minimize etmeyi hedefler:
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Bu ifade, modelin “g6zlemlenen” veriye ne kadar iyi uydugunu 6lger. Burada kayip fonksiyonu
L, LLM'lerde genellikle negatif log-olasiliktir:

L = —logPa(y; | x;)
Yani model, her dogru kelime i¢in olasilig1 miimkiin oldugunca yukar1 ¢cekmeye calisir; yanlis
kelimelere giden olasilig1 ise bastirir. Bu yaklasim, yiizeyde teknik goriinse de, sezgisel olarak
su anlama gelir: Modeli binlerce, milyonlarca 6rnege bakmaya ve bu 6rneklerdeki Oriintiileri
ogrenmeye zorluyoruz. Insanlarm bir dili nasil dgrendigini diisiindiigiimiizde bile, dogru
ifadeleri tekrar tekrar duymanin uzun vadede dogru olasilik tahminleri yapmamizi sagladigini
goruraz.
Ancak ERM’nin bir kusuru vardir: Model yalnizca gordiigii orneklerde iyi performans
gostermek lizere egitilir. Eger model asir1 karmasiksa ve veri yetersizse, iyi bir genelleme
yapmadan yalnizca veriyi ezberleme egilimi gosterebilir.
2.2 Yapisal Risk Minimizasyonu: Ogrenmeyi Dengede Tutmak
Vapnik’in onciiliigiinii yaptigi Yapisal Risk Minimizasyonu (SRM), 6grenme siirecinin
yalnizca empirik kayb1 minimize etmeye dayanmasinin yeterli olmadigini savunur. Asil amag,
yalnizca egitim verisini iyi agiklamak degil, ayn1 zamanda genelleme kapasitesini en {ist
diizeyde tutmaktir.
SRM, bunu modelin karmasikligini cezalandirarak yapar. Matematiksel olarak ifade edecek
olursak, SRM nin hedefledigi fonksiyon sudur:

Rsrm(f) = Remp(f) + AQ(f)
Burada Q(f) modelin karmasikligint 6lgen bir terimdir. LLM'lerde bu ¢ogu zaman
parametrelerin normudur.
Bu diisiince aslinda ¢ok insani bir sezgiye dayanir: Ne kadar karmagik bir agiklama yaparsak
hata yapma ihtimalimiz o kadar artar. Basit aciklamalar, cogu zaman daha saglam temellere
dayanir. Biiyiik dil modelleri de bu mantig1 igsellestirir ve dev parametre sayilarina ragmen
diizenlilestirme teknikleri sayesinde asir1 6grenme sorununu asar.
2.3 Bias—Variance Dengesi: Ogrenmenin Paradoksu
Makine 6grenmesinin en ¢arpici kavramlarindan biri bias—variance dengesidir. Bir modelin
ogrenme hatasi, {i¢ bilesenden olusur:
Bias (yanlilik, sistematik hata) , modelin veriyi fazla basitlestirdigi durumlarda ortaya ¢ikar.
Varyans ise modelin veriye asirt uyum sagladigi, yani ezberledigi durumudur. LLM'lerin
yiiksek parametreli yapilarinda varyans’in teorik olarak ¢ok yiiksek olmasi beklenirdi. Ancak
sasirtic bir sekilde, genis modeller daha iyi genelleme performansi gosteriyor. Bu durum Cifte
inis (double descent) fenomeniyle iliskilendirilir; model parametreleri kritik bir esigi astiginda,
varyans artisi tersine doner ve genelleme beklenmedik sekilde iyilesir.
Bu fenomenin altindaki matematik hala arastirilmakta olsa da, pratikte genis LLM’lerin neden
daha iyi ¢alistigin1 agiklamaya yardimer olur.
2.4 Diizenlilestirme: Ogrenmeyi Saglamlastirmak
Diizenlilestirme teknikleri, 6grenme stirecini istikrarli hale getirir. En klasik yontem L2
diizenlilestirmesidir:
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Bu terim, model parametrelerinin sonsuz biiyiikliige kagmasini engeller ve fonksiyonun
plirtizsiiz kalmasin1 saglar. Dil modellerinde bu yalnizca matematiksel bir zorunluluk degildir;
aym zamanda dilin kendisinin piiriizsiiz bir dogas1 vardir. insan dili, asir1 uclara gitmez; anlam
akis1 diizenlidir. L2 diizenlilestirme, modelin 6grenmesini bu dogal akisa yaklastirir.
Dislanma (dropout) ise tamamen farkli bir sezgiyle ¢alisir. Her egitim adiminda bazi néronlari
rastgele “kapatarak’ modelin alternatif baglantilar iizerinden diisiinmesini saglar. Matematiksel
olarak olmasa da felsefi olarak su fikre dayanir: Eger bir beyin siirekli ayni1 baglantilart
kullanirsa, bagka yollart 6grenemez. Dislanma (dropout), bu diger yollarin kesfedilmesini
saglar.
2.5 Optimizasyon: Ogrenmenin Motoru
Tim bu teorik cerceve, nihayetinde bir optimizasyon probleminin iginden geger. LLM’lerde
kullanilan optimizasyon cogunlukla adam tabanli yontemlere dayanir. En basit formuyla
gradyan azaltma (gradient descent) su sekilde yazilir:

Ot+1 =0 —nVeL
Fakat pratikte Adam gibi yontemler, momentum ve adaptif 6grenme oran1 gibi iyilestirmeler
sayesinde daha hizl1 ve stabil bir yakinsama saglar. Dil modellerinin yiiz milyarlarca parametre
icermesi diisiiniildiglinde, bu optimizasyon yontemleri olmadan egitim neredeyse imkansiz
olurdu.
2.6 Ogrenme Siirecinin Gorsel Bir Anlatimi
Bu kavramlarin birbirini nasil besledigini gostermek icin asagidaki gibi soyut bir ¢izim
yardimect1 olabilir:

. Model
[_Ve—rl_'—> Uyumlamasi l Genelleme
A
Duzenlilegtirme
(Bias-Variance) | SRM

Bu sema, dil modellerinin yalnizca veriyi ezberleyen mekanik sistemler olmadigini, dogru
dengeler kuruldugunda kavramsal bilgiye yaklasabildiklerini gosterir.

Bayesian Cikarim, Posterior (sonsal olasihik) Mantigi, Markov Zincirleri ve MCMC’nin
LLM'lerle Iliskisi

Bayesci diistinme big¢imi, belirsizligin matematiksel olarak nasil ele alinabilecegine dair en zarif
yaklagimlardan biridir ve 0zellikle blyik dil modellerinin temelindeki birgok fikri sezgisel
olarak besler. Dilin dogas1 geregi belirsizlik icermesi, Bayes yontemlerini dil modellemenin
teorik cergevesi ile uyumlu héle getirir. Bir ciimlenin devaminda hangi kelimenin gelecegini

tahmin ederken, aslinda insan zihni de Bayesci sekilde ¢alisir: Once genel bir beklenti énciil
(prior) belirler, ardindan baglamdan gelen yeni bilgileri (likelihood~benzerlik) bu beklentiyle
birlestirerek gilincellenmis bir inang (posterior) olusturur. Biiyiik dil modellerinin yaptig1 sey,
bu siireci devasa veri ve hesaplama giiciiyle otomatiklestirmektir.
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Bayes teoremi matematiksel olarak basit goriinse de yorumlandiginda oldukga derin bir igerige
sahiptir:
P(X|16)P(0)

P(X)
Bu ifade, bilinmeyen parametrelerin olasilik dagiliminin, gézlemlenen veriler 1s1ginda nasil
giincellenmesi gerektigini gosterir. Dil modellemede 68, modelin parametrelerini temsil
ederken, Xgozlemlenen kelime dizisinin kendisidir. Ancak modern LLM’ler dogrudan

PO X) =

Bayesian posterior hesaplamalar1 yapmaz; yine de egitimin dogasi, Bayesci bakis ag¢isinin
izlerini tasir.
3.1 Prior, Likelihood ve Posterior’un Dile Uyarlanmasi
Bir climlenin baginda hicbir baglam yokken, dil modelinin olast kelimeler iizerine dagilimi
aslinda bir prior’dir. Tiirk¢e’de bir climlenin biiyiik ihtimalle 6zne ya da belirleyici bir unsurla
baslamasi beklenir. Bu bekleyis, kiiltiirel ve dilbilgisel bir 6nbilginin sonucudur. Baglam
ilerledik¢e, modelin gordiigii yeni kelimeler likelihood’1 belirler ve posterior dagilim —yani bir
sonraki kelime i¢in giincellenmis beklenti— giderek daralir.
Bu durumu soyut bir 6rnekle diisiinelim. “Doktor ameliyathaneye...” ifadesinden sonra “girdi”
kelimesi, “gdmlek” kelimesinden ¢ok daha yliksek bir posterior degere sahiptir. Ciinkii
likelihood, 6nceki kelimelerle semantik uyumu yiiksek kelimeleri giiclendirmistir.
Bu sezgiyi matematiksel olarak soyle ifade edebiliriz:
P(wi | wypm1) X P(Wyp_q | w)P(wy)
Her ne kadar modern LLM’ler dogrudan Bayes formunu kullanmasa da, bu ifade dil modelinin
Oongdrii mantigini sezgisel olarak yansitir.
3.2 Markov Zincirleri: Dilin Zamansal Yapisim Yakalamak
Bayes yontemleriyle birlikte, Markov zincirleri de dilin modellenmesinde tarihsel olarak kritik
bir rol oynamistir. Markov varsayiminin temel fikri, gelecegin yalnizca yakin gegmise bagh
oldugudur. Basit bir Markov modeli su sekilde tanimlanir:
P(wi | wieq) = P(we | we_q)

Bu ifade, dilin zaman i¢inde ilerleyisini minimal baglamla anlamaya ¢alisir. Modern LLM'ler
ise baglami sonsuz bir pencerede tutarak Markov bagimliligini ¢ok genisletilmis bir hale getirir.
Ancak fikir aynmi kalir: Dil, birbirini takip eden durumlar zinciri olarak modellenebilir.
Markov siiregleri, dilin yapisindaki gegis olasiliklarini temsil eder. Gegmiste n-gram modelleri,
bu yaklasimin basit bir uygulamasiydi. LLM’ler, tiim ciimleyi ve hatta tiim belgeyi baglam
olarak kabul ederek Markov zincirinin bir genellemesini 6grenir.
Asagidaki ¢izim, dilin Markov benzeri bir sekilde ilerledigini tasvir eder:

durumi —— durume1 —— durumes2

| | |
Wt Wi+1 Wit+2
3.3 Markov Zinciri Monte Carlo (MCMC): Zor Posteriorlarin Hesaplanabilir Hale
Gelmesi
Bayesian ¢ikarimin en biiyiik zorluklarindan biri, posterior dagilimin genellikle analitik olarak
hesaplanamamasidir. Ciinkii cogu durumda payda olan:
P(X)=[P(X|60)P(6)do
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hesaplanmas1 imkansiz kadar karmagik bir integraldir. MCMC yontemleri, bu integrali kapali
formda ¢6zmek yerine posterior dagilimdan Orneklemeye dayanir. Boylece karmasik
dagilimlar, rastgele orneklerle yaklasik olarak temsil edilebilir.

MCMC’nin dil modellemesiyle iliskisi ilk bakista agik goriinmeyebilir; fakat LLM’lerin
urettigi metin Ornekleme yontemleri —o0zellikle Is1 6rneklemesi (temperature sampling),
cekirdek 6rneklemesi (nucleus sampling) ve en st k 6rneklemesi (top-k sampling) MCMC’nin
felsefesine oldukga yakindir. Model, olasilik dagiliminin tamamini degil, yalnizca en makul
bolgelerini 6rnekleyerek bir sonraki kelimeyi Uretir.

MCMC yontemlerinin temel yapis1 soyledir:

Ori1 ~ q(Oes1 1 6,)

ve kabul-kuralina dayanan siiregle ilerler:

a=min|1 —P(etﬂ | %)
- " P61 X)

Eger yeni 6rnek yeterince iyi ise kabul edilir; aksi halde eski 6rnekle devam edilir. Dil modeli
iretimi de benzer bi¢cimde calisir: En olasi olmayan kelimeler elenir, yiiksek olasiliklilar
arasinda kontrollii bir rastgelelik saglanir.
3.4 Ornekleme Yontemleri: Dil Uzerinde Olasihiklarin Dansi
Ornekleme, modern LLM’lerin yaraticiligmin merkezindedir. Deterministik bir argmax segimi
metni sikict ve mekanik héle getirirken, olasiliksal 6rnekleme (sampling) ctimlelere gesitlilik,
akigkanlik ve dogallik katar.
Temperature sampling, olasilik dagiliminin keskinligini ayarlar:
P = 1y = _ZPCD)
X exp(zj /T)
Burada T distrildikce dagilim keskinlesir ve model daha muhafazakar davranir.
T biiyiitiildiikge dagilim genisler, model daha yaratici hale gelir.
Top-k sampling, yalmzca en olas1 k kelimenin se¢ilmesine izin verir ve su sezgiyi tasir: Insan
da konusurken pek c¢ok olasilig1 zihinsel olarak eleyip yalnizca makul secenekler arasinda karar
Verir.
Nucleus sampling (p-sampling) ise daha esnek bir yaklagim sunar:
> Pwe=0z2p
i€S,
Burada Sp» toplam olasilig1 p’yi asan en kiigiik kelime kiimesidir. Bu yontem, dil tiretiminde
cesitliligi olasiliksal bir ¢ekirdek iizerinden kontrol eder.
Bu sampling yontemleri MCMC ile ayni zihinsel modele sahiptir: Olasilik uzayinda rastgele
bir yiiriiyiis yapilir, ancak bu yiiriiylis yliksek olasilikli bolgelerde yogunlasir.
3.5 Dilin Bayesian Yorumunun Gorsel Cizimi
Asagidaki ¢izim, Bayesian ¢ikarimin dil iizerindeki etkisini sezgisel olarak agiklar:
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Prior
(Gend [X] Bilgisi)

Likelihood
(Baglan)

A 4
Posterior

(Siradaki Kedime Clasthklan)

Baglam arttik¢a prior’in etkisi azalir ve likelihood daha baskin hale gelir; tipki ger¢ek insan
konusmasinda oldugu gibi.
4 — EM Algoritmasi, Gizli Degiskenler, HMM Gelenegi ve LLM’lere Giden Yol
Modern biiylik dil modellerinin parladig1 cagdan 6nce, dogal dil isleme alaninda hiikiim stren
kavramlardan biri “gizli degiskenli istatistiksel modeller’di. Bu modeller, goézlemledigimiz
verinin arkasinda, dogrudan goremedigimiz ama davranist aciklayan gizli nedenler oldugu
varsayimima dayaniyordu. Bir ciimledeki kelimeler gozlemlenebilir, ama 0 clUmledeki
sozdizimsel yapilar, anlam simiflar1, konu etiketleri cogu zaman gizlidir. Istatistiksel modeller
bu goriinmeyen yapilart tahmin etmeye calisirken, onlara rehberlik eden en Onemli
yontemlerden biri, beklenti-maksimizasyon algoritmasi, yani EM algoritmasi oldu.
EM, ilk bakista soyut bir optimizasyon prosediirii gibi goriinse de, iceriginde son derece
sezgisel bir hikaye barindirir: Elinde hem goriilen hem de goriilemeyen bilesenlerden olusan
bir sistem vardir; dogrudan en iyi parametreleri bulamiyorsun, ama “gizli olan1” tahmin edip
“gbriineni” daha iy1 agiklamaya calisarak, adim adim 1iyilesebiliyorsun. Dil modellerinin
tarihsel evriminde, dzellikle gizli Markov modelleri (HMM) ve istatistiksel makine gevirisi igin
kullanilan IBM modelleri gibi yapilar, EM’in sahnedeki basrol oyunculartydi. Bugiinkii
LLM’ler, mimari olarak farkli goriinseler de, bu gizli degiskenli diisiinme bigiminden dogrudan
etkilenmistir.
4.1 Gizli Degiskenlerin Diinyas1
Gizli degisken kavramini, bir tiyatro sahnesi metaforuyla disiinebiliriz. Seyirci, sahnede
oynanan oyunu, yani gozlemlenen veriyi goriir. Oyuncularin motivasyonlari, yonetmenin
tercihleri, provalarda alinan kararlar ise sahne arkasindadir; gériinmezler ama oyunun gidisatini
belirlerler. Istatistiksel bir modelde ise bu sahne arkasi, genellikle Zile gosterilen gizli
degiskenlerdir. G6zlemlenen veriyi X, modelin parametrelerini @ile gosterirsek, sistemin ortak
olasilig1 su sekilde yazilir:

P(X,Z10)

Oysa bizim goziimiiz yalnizca X' 'i goriir. Dolayisiyla ilgilendigimiz biiyiikliik, marjinal olasilik
olan

P(XIH)zZ P(X,Z | 6)
Z

ifadesidir. Ancak bu toplam, 6zellikle biiyiik ve karmasik gizli yapilarin oldugu modellerde,
pratikte hesaplanamaz hale gelir. Iste EM algoritmasi, bu hesaplanamaz marjinal olasilig1
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dogrudan optimize etmeye caligmak yerine, “gizli degiskenler lizerinden dolanip” ¢6ziim
bulmay1 nerir.
Dil baglaminda diislindiigiimiizde Z, bir climlenin s6zdizimsel agaci olabilir, kelimelere atanan
konu etiketleri olabilir, ceviride hizalanan kelime eslesmeleri olabilir. G6zlemlenen kelimeler
sabittir, fakat onlarin altinda yatan soyut dil yapilar gizlidir.
4.2 EM Algoritmasimin Kalbi: Beklenti ve Maksimizasyon
EM algoritmasinin mantigint anlamak i¢in, dnce “tam veri log-olasilig1” dedigimiz bir ifadeye
bakmak gerekir:
logP(X,Z | 0)
Eger hem X hem Z biliniyor olsaydi, parametre tahmini ¢ok daha kolay olacakti; ¢iinkii tam
veri lizerinden klasik maksimum olasilik tahmini (MLE) yapabilirdik. Ne var ki ger¢ek hayatta
Zgozlemlenebilir degildir. EM, bu ikilemi bir tiir “hayali tam veri” yaklasimiyla ¢ozer. Yani
sunu sdyler: Elimdeki parametre tahmini 0 ®ile, gizli degiskenlerin dagilimini tahmin
edebilirim. Bu tahminle, tam veri log-olasiliginin beklenen degerini alir, sonra bu beklenen
degeri en biiyiikleyen yeni bir parametre seti 8 ™¢")bulurum.
Bu siire¢ iki adimda isler. ilk adim, beklenti adimidir (E-adimi). Burada su fonksiyonu
tanimlariz:
Q(8,0°) = E,y oy [log P(X,Z | 6)]
Bu ifade, mevcut parametreler altinda gizli degiskenlerin dagilimini kullanarak, tam veri log-
olasiliginin beklentisini hesaplar. ikinci adim, maksimize etme adimidir (M-adimi):
0eV) = arg mgaxQ(H, g ld))

Bu iki adim, doniisiimlii olarak tekrarlanir. Igsel olarak su hikdye anlatilir: “Mevcut
parametrelerle gizli yapiyr tahmin et; sonra bu tahmin edilmis gizli yap1 iizerinden
parametrelerini giincelle; sonra tekrar gizli yapiy1 giincelle...” Boylece parametreler, adim adim
gozlemlenen veriye daha iyi uyan bir ¢izgiye dogru siiriiklenir.

Bu mekanizmanin arkasinda Jensen esitsizligi yatar. Marjinal log-olasilik

log P(X | 8) = logz P(X,Z | 6)
VA

dogrudan optimize edilemezken, EM bir alt sinir tanimlar ve bu alt sinir1 monoton olarak
yukseltir. Boylece her iterasyonda, modelin veriyi agiklama giicii artar veya en azindan
azalmadig1 garanti edilir.
4.3 Gizli Markov Modelleri: Dil I¢cin EM’in i1k Tiyatrosu
EM’in dil diinyasindaki en taninmis sahnelerinden biri gizli Markov modelleridir (HMM).
HMM’de, gozlemlenen degiskenler genellikle kelimeler ya da semboller, gizli degiskenler ise
“durum” dedigimiz, mesela sozciik tiirleri (isim, fiil, sifat) veya fonetik birimlerin siniflari
olabilir. HMM nin yapist, bir zincir seklinde tasvir edilir:

Ih——>Ip——> 13— ...—— 77

| | | |

X1 X2 X1 Xt
Bu diyagramda iistteki Z zinciri, gizli durumlarin zaman igerisindeki gelisimini; alttaki X’ler
ise bu gizli durumlarin iirettigi gozlemleri temsil eder. HMM nin ortak olasiligi su bigimdedir:



Euasian Econometrics, Statistics & Empenical Economics Yournal 2025, Yolume:26 97

P,z10) =Pz | | P@1ze| | PO 120

Burada parametreler, baglangi¢ durum olasiliklari, durum gecis olasiliklar1 ve gozlem
olasiliklaridir. Bu parametreleri, yalnizca gozlemlenen Xiizerinden tahmin etmek istedigimizde,
EM devreye girer. HMM 6zelinde kullanilan EM tiirevi, Baum—Welch algoritmasi olarak
bilinir.
Baum-Welch, E-adiminda, ileri—geri (forward—backward) algoritmasini kullanarak her
zamandaki gizli durum olasiliklarini ve durum gegislerinin beklenen sayisin1 hesaplar. M-
adiminda ise bu beklenen sayilar1 kullanarak gegis ve gézlem olasiliklarini yeniden tahmin eder.
Bu déngu, modelin dil verisini daha iyi agiklayabildigi bir parametre setinde duruncaya kadar
surer.
4.4 istatistiksel Makine Cevirisi, IBM Modelleri ve EM
EM’in dil diinyasindaki bir diger biiyiik sahnesi, istatistiksel makine ¢evirisidir. Noral makine
cevirisi ve LLM tabanli geviri sistemlerinden dnce, ciimleler arasindaki ceviri eslesmelerini
modellemek i¢in IBM modelleri kullaniliyordu. Bu modellerde, bir kaynak dil ctimlesindeki
kelimelerle hedef dil ciimlesindeki kelimeler arasindaki hizalama yapis1 gizliydi. Yani hangi
Ingilizce kelimenin hangi Tiirkce kelimeye karsilik geldigini dogrudan bilmiyorduk; bildigimiz
tek sey, iki dildeki climle ciftleriydi.
Iste burada, hizalama degiskenleri gizli degiskenler olarak tanimlanir ve EM ile &grenilir. Ortak
olasilik kabaca su bigimde yazilabilir:

P(f,e,al0)
Burada e kaynak dil climlesi, f hedef dil cumlesi, a ise kelime hizalama yapisidir. Marjinal
olasilikta, gizli hizalamalar toplanir:

P(fle,9)=z P(f,a e 6)

4.5 EM’den LLM’lere: Kavramsal Koprii

Simdi dogal bir soru ortaya g¢ikar: Transformer (doniistiiriicii) tabanli biiylik dil modelleri
dogrudan EM kullanmiyorsa, EM’in bu uzun hikdyesi LLM’lerle nasil iliskilidir? Cevap,
kavramsal diizeyde, gizli degisken diisiincesi ve beklenti—gilincelleme dongiistinde saklidir.
Transformer (doniistiiriict)katmanlarini, bir anlamda gizli temsil giincelleme adimlar1 olarak
gorebiliriz. Her katmanda, modelin i¢ durumlar1 olan gizli temsil vektorleri, giristeki ve dnceki
katmandaki bilgilere bakarak yeniden hesaplanir. Bu, EM’in E-adim1 gibi, gdriinmeyen
temsilin giincellenmesidir. Daha sonra geri yayilim (backpropagation), parametreleri
glincelleyerek M-adimina benzer bir rol oynar: “Bu gizli temsil giincellemesi daha iyi olsun”
diye parametreleri ayarlar. Elbette teknik olarak EM ve gradient descent (gradyan boyut
azaltma) farkli iki mekanizmadir; ama genel diisiinme bigimi, gériinen veriyi agiklamak igin
gizli bir i¢ dlinya tahmin etmek ve bu i¢ diinyayr adim adim iyilestirmektir.

Buna ek olarak, modern modellerde kullanilan mixture-of-experts (MoE) (uzman karmasi) gibi
yapilar, tam anlamiyla gizli degiskenli karisim modellerinin yeniden dogmus halidir. Hangi
“uzmanin” devreye girecegi, gizli bir se¢cim degiskeni ile belirlenir. Egitim sirasinda, bu se¢im
dagilimi Ogrenilir ve modelin parametreleri bu gizli karisimi daha iyi kullanacak sekilde
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giincellenir. Bu tablo, EM’in karisim modelleri i¢in yaptig1 klasik giincelleme dongiisiiyle
sasirtici derecede benzer bir ruh tasir.
4.6 Gorsel Bir Ozet: EM’in Dilden LLM’lere Uzanan izleri

Bu kavramlar1 kafada toparlamak icin basit bir ¢izim diislinebiliriz:

Gozlenen Veri (X)

Gizli Yap1i Z Model Parametreleri ©

(E-adimx: Z|X,8) (M-adimy: B|X,Z)

1

Daha iyi aciklanan veri

Bu sema, ister HMM egitiyor olalim, ister IBM modeli, ister MoE’li bir Transformer; temel
sezginin benzer oldugunu gosterir: Gizlenen bir yapiyr tahmin eder ve bu yapiyr daha iyi
aciklayacak parametreler buluruz.

5 — Boyut indirgeme, PCA, SVD, Embedding Uzaylar1 ve LLM’lerin Temel Geometrisi
Biiyiik dil modellerinin yilizeydeki isleyisi kelimeleri, climleleri ve belgeleri islemek iizerine
kurulu olsa da, bu goriiniimiin altinda derin bir geometrik gerceklik yatar. LLM’lerin giicii, dilin
matematiksel bir uzayda temsil edilmesinden dogar. Bu temsil, kelimelerin ve anlamlarin
yiiksek boyutlu vektorler haline doniistiiriilmesiyle baslar. Bu vektorleri, dilin i¢sel anlam
yapisinin geometrik golgeleri gibi diigiinebiliriz. Modern modellerde bu uzay genellikle 768,
1024 veya 4096 boyutlu olabilir. Ancak dilin anlam yapis1 bundan ¢ok daha diisiik boyutludur.
Boyut indirgeme yontemleri, bu girift uzay1 daha yonetilebilir bir forma sokar ve LLM’lerin
semantik yapilar1 daha verimli islemesini saglar.

Bu nedenle PCA (Principal Component Analysis~Temel Bilesenler Analizi) ve SVD (Singular
Value Decomposition~Tek Degerli Ayrigma), yalnizca matematiksel araglar degil, ayni
zamanda embedding (gémull) uzaymin nasil olustugunu ve LLM’lerin egitilirken nasil bir i¢
geometri kazandigini anlamamiz i¢in anahtar kavramlardir. Bu boliimde, bu geometrik yapilari
adim adim agmadan Once, yiiksek boyutlulugun dil i¢in neden hem bir yiik hem de bir firsat
oldugunu gorerek baslayalim.

5.1 Dilin Yiiksek Boyutlara Dogru Acilan Kapisi

Dogal dilin karmasikligi, kelimelerin ve climlelerin ¢ok sayida farkli baglamda ¢ok farkl
anlamlar kazanmasmdan kaynaklanir. Ornegin “sepet” kelimesi hem finansal bir enstriman
setini hem de sazdan yapilan tasima kabini ifade edebilir. Bu tiir gok anlamlilik, tek bir boyutta
temsil edilemeyecek kadar zengindir. Dolayisiyla embedding’lerin yiiksek boyutlu uzaylarda
bulunmasi, bu niianslari temsil etmenin bir zorunlulugudur.

Bununla birlikte, yiiksek boyutlu uzaylarin kendine 6zgii bir tuhaflig1 vardir: Noktalar birbirine
esit derecede uzakta olma egilimindedir. Bu boyutluluk laneti (curse of dimensionality) olarak
bilinen olgudur. Dil uzayin1 makul sekilde 6grenebilmek icin, bu yiiksek boyutlu karmasikligi
belirli bir altta yatan diigiik boyutlu yapiya indirgemek gerekir. PCA ve SVD bu ihtiyacin dogal
sonucu olarak ortaya ¢ikar.
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5.2 PCA: Anlamin Ana Eksenlerini Bulmak
Principal Component Analysis (PCA), verinin en fazla degistigi yonleri bulmaya calisan bir
teknik olarak diisiiniilebilir. Bu yonler, dilin semantik agidan en baskin oriintiilerini igerir.
PCA’nin matematiksel tanimi1 su sekildedir:

maximize w'Ew  durumunda ||w =1

Burada X, embedding matrisinin kovaryansidir. Bu ifade, vektorlerin varyansi en yiiksek oldugu
yonl bulmaya calisir. PCA yalnizca bir boyut indirgeme yontemi degildir; ayn1 zamanda
anlamin baskin yonlerini ortaya ¢ikaran bir mercek gibidir. Embedding uzayindaki ilk birkag
principal component genellikle cinsiyet, ¢cogulluk, zaman veya semantik alan gibi genis dil
iliskilerine karsilik gelir.

PCA’nin geometrik yorumu, agagidaki gibi basit bir ¢izimde goriilebilir:

principal axis -

Bu eksen, verinin en ¢ok yayildigi yonii temsil eder. Dil modellerinde bu yayilma, anlam
cesitliliginin en baskin paternlerine karsilik gelir.
5.3 SVD: Embedding Uzaymin Gizli Yapisim Ayristirmak
PCA’nin ardindaki matematiksel iglem aslinda tekil deger ayrisimidir (SVD). Bir metin veri
kiimesini ifade etmek i¢in kullandigimiz embedding matrisi X, SVD ile su sekilde ayrisir:
X=U0zv"
Bu ayrisimda Udoktman vektorlerini, Vkelime vektorlerini, Zise yapiin “enerji” dagilimini
temsil eden tekil degerleri ifade eder. Eger embedding matrisi devasa bir uzayda gereksiz
karmasiklik tastyorsa, diisiik tekil degerlere karsilik gelen bilesenleri atarak daha kompakt bir
uzay olusturabiliriz.
Daha da onemlisi, SVD dil modellemenin tarihsel koklerinde yer alir. Word2Vec’in negatif
ornekleme (negative sampling) yontemiyle tiretilmis embedding’lerinin aslinda bir SVD’nin
diisiik dereceli bir yaklasimi oldugu gosterilmistir (Levy & Goldberg, 2014). Dolayisiyla
LLM’lerde kullandigimiz modern embedding uzaylari, bu tarihsel temelin dogal bir devamidar.
SVD’nin geometrik yorumunu soyle diistinebiliriz:
X (ylksek boyutlu)
1 SVD
Uu—3xs—V"
| diisiik riitbeli yap1
Xr (indirgenmis anlam uzay1)

5.4 Embedding Uzayinin Geometrisi: Anlamin Dort Bir Yam

Dil modelleri kelimeleri yalnizca semboller olarak degil, anlam kiimeleri olarak isler. Bu
kiimeler embedding uzayinda ¢ogu zaman 6beklenmis halde bulunur. Semantik olarak benzer
kelimelerin birbirine yakin olmasi, modelin benzer ciimle yapilarinda bu kelimeleri kolayca
birbirinin yerine kullanabilmesini saglar.
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Asagidaki soyut ¢izim bu kiimelenmeyi goéziimiizde canlandirabilir:

« finans = =

+ saglik «

Bu kiimeler arasinda vektorel iligskiler vardir. Word2Vec ile popiilerlesen su klasik analoji,
embedding uzayinin vektorel dogasini temsil eder:
v(kral) — v(adam) + v(kadin) = v(kralige)

Bu tiir iligkiler yalnizca bir istatistiksel tesadiif degildir; embedding uzayimin dogrusal yapisinin
bir sonucudur. Bu dogrusal yap1 SVD’nin sagladigi matris ayrigiminin dil uzayima yansimasidir.
5.5 Yiiksek Boyutlu Uzaylarda Mesafe, A¢1 ve Benzerlik
LLM’ler, kelimeler arasindaki benzerligi genellikle kosiniis benzerligiyle dlger:

u-v

cos(f) =

(Nl

Kosiniis benzerligi, vektorlerin ayn1 yonde olup olmadigini dlger. Yiiksek boyutlu embedding
uzayinda, mesafeden ¢ok a¢1 6nemlidir; ¢linkii noktalarin mutlak mesafeleri yiiksek boyutlarda
anlamini kaybeder. Bu nedenle semantik yakinlik, iki vektoriin yonsel benzerliginde saklidir.
Transformer mimarisindeki self-attention (kendi kendine bakim) mekanizmasinin kalbi olan

scaled dot-product attention (Ol¢iilmiis sonug iiretimi bakimi) tam olarak bu iliskiyi kullanir:
T

, Q
Attention(Q, K, V) = softmax(
Jay

Burada Q ve K arasindaki i¢ ¢arpim, kelimeler arasindaki benzerligi temsil eden bir geometrik

14

Olciidiir. Yani Transformer’in anlam bulma mekanizmasi, embedding uzaymin geometrisi
uzerine kuruludur.

5.6 LLM’lerde Boyutun Estetigi

LLM’ler ilk bakista devasa boyutlariyla korkutucudur; yiiz milyarlarca parametre, binlerce
boyutlu embedding alanlari, karmagik transformasyonlar... Fakat isin derininde, bu karmasa
daha basit bir yapmin tekrarli ve genisletilmis bir versiyonudur: Dilin anlam bilesenlerini
yiiksek boyutlu ama yapilandirilmis bir uzaya yerlestirmek. Bu uzaym estetigi, PCA ve SVD
gibi yontemlerin ortaya ¢ikardigi diisiik boyutlulugun altinda yatan diizenle ilgilidir. Dilin i¢sel
diizeni vardir ve boyut indirgeme yontemleri bu diizeni sezgisel olarak agiga ¢ikarir.

Yiiksek boyutlar, anlam1 tasimak i¢in gereklidir; ama agir1 yiiksek boyutlar modelin kavrama
yetenegini bozabilir. Bu nedenle LLM’ler, embedding boyutlarini dikkatli seger; 256 boyut ¢cok
s1g kalirken, 4096 boyutun 6tesi modelin “diizlesmesine” neden olabilir. Bu hassas denge,
aslinda PCA’nin ve SVD’nin bize uzun yillar 6nce 6grettigi bir gergegi yansitir: Boyut, tagidigi
varyans kadar anlamlidir.
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6 — Olasiliksal Grafik Modeller, Bagimhlik Yapilari ve Transformer’in I¢sel Graf Mantig
Biiytik dil modelleri hakkinda konusurken genellikle “sinir ag1”, “katman sayis1”, “parametre
sayis1” gibi kavramlara odaklaniriz; ama bu modellerin baska bir yiizli daha vardir: Onlar,
aslinda dev birer olasiliksal grafin, 6grenilmis ve siirekli gilincellenen niishalart gibidir.
Olasiliksal grafik modeller, rastgele degiskenler arasindaki bagimlilik ve bagimsizlik
iliskilerini ¢izgiler ve diiglimler iizerinden temsil eden yapilar olarak, LLM’lerin ne yaptigini
sezgisel olarak anlamamiz i¢in giiclii bir dil sunar. Dil, kelimeler arasindaki iligkilerin bir ag
icinde dolastig1 karmasik bir yapiysa; grafik modeller bu agin matematiksel haritasidir.
Burada once olasiliksal grafik modellerin temel kavramlarini, ardindan bu kavramlarin dil
modellemesiyle nasil temas ettigini, son olarak da Transformer’in self-attention
mekanizmasinin, aslinda dinamik ve veriyle belirlenen bir graf yapis1 gibi diisiiniilebilecegini
ele alacagiz.

6.1 Grafik Modellerin Temel Fikri: Bagimhiliklarin Haritas:

Olasiliksal grafik modellerin ¢ikis noktasi oldukga basittir: Cok sayida rastgele degiskeniniz
varsa ve hepsinin birbiriyle dogrudan iligki i¢inde oldugunu varsayarsaniz, bu degiskenlerin
ortak dagilimin1 modellemek neredeyse imkansiz hale gelir. Ancak ¢ogu gercek sistemde, her
seyin her seyle dogrudan iligkili olmas1 gerekmez; bazi degiskenler, digerlerinden bagimsiz
olabilir ya da yalnizca sinirh sayida komsusuna bagli olabilir. Grafik modeller, iste bu “yerel
bagimlilik” fikrini ¢izgiler ve diigiimler iizerinden ifade eder.

Basit bir gdsterimle, her rastgele degiskeni bir diiglimle, aralarindaki kosullu bagimliliklari ise
kenarlarla gosteririz:

1 — X2 — X3

X4 X5

Bu kiigiik sema bile, hangi degiskenlerin birbirine dogrudan bagli oldugunu, hangilerinin
yalnizca dolayl yollarla etkilestigini sezdirir. Dil uzayinda bu diiglimler kelimeler, s6zdizimsel
etiketler, anlam kategorileri ya da gizli temsil vektorleri olabilir.

Grafik modellerin giicii, ortak dagilimi pargalara ayiran faktdrizasyon yapisindan gelir. Ornegin
yonlendirilmis bir graf modelinde, her diiglim yalnizca ebeveynlerine baglidir ve ortak olasilik
sOyle yazilir:

P(Xy, ..., X,) = 1_[ P(X; | Pa(X))
i=1

Burada Pa(X;), graf lizerindeki ebeveyn diigiimlerini ifade eder. Bu faktorizasyon, hem
hesaplamay1 kolaylastirir hem de modelin temsil giiclinii daha anlagilir kilar.

6.2 Yonlendirilmis ve Yonlendirilmemis Yapilar: Nedensellik ve Simetri

Grafik modeller iki ana aileye ayrilir: yonlendirilmis (Bayesian aglar) ve yonlendirilmemis
(Markov rastgele alanlar1). Yonlendirilmis grafiklerde oklar, belirli bir kosullu bagimlilik
yoniinii, cogu zaman nedensel bir yorumu ima eder. Ornegin

A->B-C

gibi bir yapi, C’nin B’ye, B’nin ise A’ya bagli oldugunu, ama C’nin dogrudan A’dan
etkilenmedigini (B lizerinden dolayl etkilendigini) ima eder.
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Dil acisindan bakarsak, 6rnegin bir fiilin zaman kipinin, climlenin genel zaman g¢ercevesine
bagli olmasi ama bazi kosullarda 6zne se¢ciminden dogrudan etkilenmemesi gibi ince bagimlilik
iliskilerini bu tiir aglar tizerinden diisiinebiliriz.

Yonlendirilmemis grafiklerde ise kenarlar, simetrik iligkileri ifade eder ve ortak dagilim
genellikle potansiyel fonksiyonlarla yazilir:

1
Py =] | e
cec
Burada C, grafin klik kiimelerini, Y .ise o klik {izerinde taniml1 potansiyel fonksiyonlar1 temsil

eder. Dil modelleme baglaminda bu potansiyeller, belirli kelime gruplarinin birlikte ortaya
¢ikma egilimlerini kodlayan, daha esnek ama daha zor egitimli yapilar olarak diisiiniilebilir.
6.3 Grafik Modeller ve Dil: Bagimlihklarin Ciimle Icinde Akisi

Dogal dil, grafik modeller i¢in neredeyse ideal bir oyun alanidir. Her ciimlede, kelimeler
arasinda karmagsik bir bagimlilik zenginligi bulunur. Bazi kelimeler, digerlerini neredeyse
belirler; bazilar1 ise yalnizca dolayli anlam etkileri yaratir. Ornegin “eger” kelimesi, ardindan
gelecek kosullu bir yapiy1 cagirir; “ciinkli” kelimesi neden-sonug baglantisi kurar.

Geleneksel istatistiksel dil modellemede, bu bagimliliklar ¢ogu zaman zincir seklinde (Markov
zincirleri, n-gram modelleri) temsil edilmistir. Ancak daha gelismis grafik modeller, bir
ciimledeki bagimliliklarin yalnizca sol-sag yoniinde degil, tiim ciimle boyunca capraz
referanslarla  oriildiigiinii  yakalamaya calismistir. Ornegin  bagimlilik  ¢oziimlemesi
(dependency parsing), her kelimeyi digerleriyle iligkilendiren aga¢ yapilari iiretir:

ROOT
fiil
I

gzne nesne

Bu tiir agaclar, bir nevi grafik modelin 6zel bir halidir. Transformer mimarisi ortaya ¢iktiginda,
bu tur yapilart agikga tanimlamasa da, attention (6zen~ilgi~bakim) mekanizmasi araciligiyla
benzer iligki aglarini “6grenir” hale geldi.

6.4 Transformer’in Self-Attention’1: Dinamik Bir Graf Olarak Okunmasi

Transformer’in kalbinde yer alan self-attention mekanizmasi, her token’in, dizideki diger tiim
token’larla etkilesime girmesine izin verir. Matematiksel formiil basittir ama derin bir anlam
tasir:

. QKT
Attention(Q, K, V) = softmax vV

Jax

Burada @, Kve Vmatrisleri, sirastyla sorgu (query), anahtar (key) ve deger (value) vektdrlerini
temsil eder. QK "carpimu, her token’in diger token’larla ne kadar iliskili oldugunu 6lgen bir
benzerlik matrisi iiretir. Bu matrisin softmax ile normalize edilmesi, her satir1 olasilik
dagilimina doniistiiriir. Boylece her kelime, diger kelimeler tizerine taniml1 bir olasilik dagilimi
iizerinden agirlikli ortalama alir.



Euasian Econometrics, Statistics & Empenical Economics Yournal 2025, Yolume:26 - 103

Bu yapiy1 grafiksel bir gozle okursak, her attention bashigi, climle iizerindeki olas1 bir
yonlendirilmis graf icin agirlikli kenarlar1 grenen bir mekanizma olarak goriilebilir. Ornegin
bir attention basligi, 6zne—fiil iligkilerine; bir digeri, zamir—referans iliskilerine; bir bagkasi ise
zamansal baglara odaklanabilir. Bu durumda, self-attention’in irettigi matrisi, bir grafin
komsuluk matrisi gibi diistinebiliriz:

Tokenlar: t1 t2 t3 t4

Attention agirliklara (t2 ig¢in):

t1 — 8.1
t2 — 8.4 (kendi dzerine)
t3 — 8.3
t4 — 8.2

Bu tabloyu, t2 diigiimiinden diger diiglimlere giden yonlendirilmis ve agirlikli kenarlar olarak
yorumlayabiliriz. Boyle bakinca Transformer, her ileri gegiste, dizinin lizerinde yeni bir
olasiliksal graf oriiyor ve bu graf iizerinden bilgi yayilimi sagliyor.

6.5 Faktorizasyon, Kosullu Bagimsizlik ve Attention’in Rolii

Grafik modellerin en 6nemli avantajlarindan biri, kosullu bagimsizlik iligkilerini net bicimde
ifade etmesidir. Ornegin bir Bayesian aginda, belirli bir diigiim, ebeveynleri verildiginde bazi
diger diigiimlerden bagimsiz olabilir. Bu bagimsizlik iliskileri, hem hesaplamay1 hizlandirir
hem de modelin yorumlanabilirligini artirir.

Transformer’da ise, teoride her token (GOsterge~simge) her token’a baghdir ve tam anlamiyla
“yogun” bir graf yapisi ortaya ¢ikar. Ancak pratikte, attention agirliklari bu yogun grafin
icinden seyrek ve anlamli alt-graplar secer. Yiiksek agirlik alan kenarlar, gii¢lii bagimliliklari;
diistik agirlik alanlar ise zayif, cogu zaman ihmal edilebilir iliskileri temsil eder. Boylece model,
dilin i¢indeki 6nemli baglantilar1 vurgulayan, 6nemsizleri ise perdeleyen bir faktdrizasyon
mekanizmasina sahip olur.

Bu durumu, klasik faktorizasyon formiilii ile sezgisel bir sekilde iliskilendirebiliriz. Dil
modelinin ortak olasiligini:

T
P(wy, ..., wp) = l_[ P(w; | wer)
t=1

seklinde yazdigimizda, aslinda her bir kosullu dagilimin, attention yoluyla belirlenen bir alt
baglama indirgenmis oldugunu hatirlamak gerekir. Yani model, ge¢misin tamamini degil,
gecmisteki “iliskili” noktalar1 daha ¢ok dikkate alir. Attention, bu iliskililigi belirleyen veri
giidiimlii bir graf ¢ikarimi olarak goriilebilir.

6.6 Grafiksel Yorumun Dil Anlayisina Katkisi

Transformer ve LLM’leri grafik modeller acisindan okumak, yalnizca teorik bir oyun degildir;
pratikte de model ici agiklanabilirlik icin oldukca 6nemlidir. Ornegin bir ciimledeki belirli bir
tahminin hangi kelimelerden ne kadar etkilendigini, attention agirliklar1 iizerinden
gorsellestirebiliriz. Bu gorsellestirme, aslinda grafin belli bir diiglimiinden c¢ikan kenar
agirliklarini izlemekten baska bir sey degildir.

Basit bir 6rnek olarak, “Doktor ameliyathaneye girdi ¢iinkii hasta kritikti.” ciimlesinde,
“kritikti” kelimesinin anlamini ¢oziimlerken modelin “hasta” ve “ameliyathaneye” kelimelerine
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yiiksek attention vermesi, semantik agin bu {i¢ diiglim arasinda yogunlastigini gdsterir. Bu
durum, grafik model dilinin bize sundugu “odaklanmis alt-yap1” kavramina ¢ok benzer: Biiyiik
ag icinde kii¢lik, anlam yiiklii alt grafikler.

7 — Optimizasyon, Kayip Fonksiyonlari, Gradient (diigiim~degisme~irtifa~meyil)AKis1 ve
LLM Egitim Dinamikleri

Biiytik dil modellerinin ylizeyde gordiigiimiiz etkileyici yetenegi, aslinda arkada isleyen dev bir
optimizasyon siirecinin Uriiniidiir. Bir LLM, dildeki anlam ve yapiy1 “ezberlemez”; bunun
yerine, devasa miktardaki veriye bakarak, hangi parametre kombinasyonunun bu veriyi en iyi
aciklayacagini bulmaya galisir. Bu arayis, yliksek boyutlu bir uzayda kayip fonksiyonunun en
alcak noktalarini kesfetme c¢abasidir. Bu boliimde, dil modellerinin neden “6grenebildigini”,
gradient descent’in (boyut azaltma) neden ise yaradigini ve optimizasyon yiizeylerinin neden
diisiiniildiigiinden daha karmasik ama bir o kadar da diizenli oldugunu ele alacagiz.

7.1 Kayip Fonksiyonlari: Dilin Matematiksel Ekonomisi

Bir LLM'in 6grendigi her sey, bir kayip fonksiyonunun minimize edilmesine dayanir. Egitim
sirasinda en sik kullanilan kayip fonksiyonu ¢apraz entropi (cross-entropy)’dir. Dil modelleme
baglaminda, modelin tahmin ettigi olasilik dagilimi pg(w, | w.;)ile gercek kelimenin tekil
dagilimi1 arasindaki mesafeyi 6l¢er. Matematiksel olarak:

T
£(8) == ) logpy(we | weo)
t=1

Bu ifade, modelin dogru kelimeye yeterince yiiksek olasilik verip vermedigini dlger. Egitim
boyunca bu kayip milyonlarca, hatta yiiz milyonlarca 6rnek iizerinden hesaplanir. Kayip
fonksiyonunun gorevi sadece modelin hata yapip yapmadigmi sdylemek degildir; ayni
zamanda, dogru yonde giincellenmesi i¢in gerekli olan ince gradyan dokunuslarini da olusturur.
Benzetme yapmak gerekirse, kayip fonksiyonu dilin 6gretmeni, gradient ise 6gretmenin verdigi
geri bildirim, parametreler ise Ogrencinin bir sonraki derse hazirlanmak icin yaptig
dizeltmelerdir.
7.2 Gradyan Azaltma: Derin Ogrenmenin Atar Damari
Bir sinir agmin dgrenebilmesi i¢in parametrelerinin degistirilmesi gerekir. Gradient descent
(GD), bu degisikligin yoniinii ve miktarini belirler. Eger kayip fonksiyonunu bir daglik arazi
gibi diisiiniirsek, gradient descent bu dagin en algak noktasini bulmaya calisan bir gezgin
gibidir. Dagin egimi, gezginin nereye dogru adim atmasi gerektigini sdyler.
Bir parametre giincellemesi su sekilde ifade edilir:

Ot+1 =0 —nVeL(6;)

Burada n, 6grenme hizidir; ¢ok biiyiik segilirse model dagin bir yamacindan diger yamacina
savrulur, ¢ok kiguk secilirse model ilerleyemez. Bu hassas denge, LLM egitiminde uzun
yillardir biiytik bir arastirma konusudur.

Gradient descent’in sezgisel giiclinii anlamak icin, kayip yiizeyini iki boyutlu bir ¢izimle
gbziimiizde canlandirabiliriz:
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(ylksek kayip)
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! \ « gradient y&ni
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(low loss region)

Bu yiizey, LLM parametrelerinin i¢inde dolastigi milyarlarca boyutlu bir arazinin sadece kiigiik
bir iki boyutlu kesitidir.
7.3 Stokastik (Tesadifi) Gradient Descent (SGD): Verinin Guraltisinid Avantaja
Cevirmek
Gergek diinyada, tiim veri lizerinden kayip ve gradient hesaplamak ¢ok pahalidir. Bu nedenle
SGD, yani mini-batch gradient descent (mini yigin~parti boyut azaltma), egitim siirecinin fiili
standardidir. Her adimda veri kiimesinden kiigiik bir 6rnek grubu alinir ve gradient yalnizca bu
ornekler tizerinden hesaplanir.
Bu yontem, iki 6nemli avantaj saglar:

1. Gereksiz hesaplamayi azaltir ve egitimi hizlandirir.

2. Gradient’e biraz “giirilti” ekler; bu girilti modelin kayip ylizeyinde yerel
minimumlara takilmasini engelleyebilir.

Bu sezgiyi soyle bir ¢izimle diislinebiliriz:

deterministic GD — diiz ve kararli inis
stochastic GD  — zikzakli ama daha serbest hareket

LLM’lerin devasa boyutlu kayip yiizeyleri diisiiniildiigiinde, SGD’nin bu rastlantisallig
modelin etkili 6grenmesini saglayan unsurlardan biridir.

7.4 Kayip Yiizeyleri: Diisiindiigiimiizden Daha Diiz, Ama Yine de Kaygan

Ilk bakista, milyarlarca parametreli bir modelin kayip yiizeyi hayal edilemeyecek kadar
karmasik olmaliymis gibi gelir. Ancak matematiksel bulgular, yiiksek boyutlu uzaylarin
sasirtict bir sekilde daha diizenli oldugunu gostermistir. Ozellikle genis aglarda, kotii yerel
minimumlarin neredeyse hi¢ olmadigi, kayip ylizeylerinin nispeten diiz oldugu gériilmiistiir.
Bu durumu daha somut gérmek i¢in, literatiirde sikga verilen bir kesit ¢izimini diislinebiliriz:

Bu yizey, keskin bir ¢ukurdan ¢ok, diz bir vadinin igcinden gegen genis bir inise benzer.
LLM’lerde “flat-minima” (diiz minimumlar) olarak bilinen bu bdlgeler, modelin daha iyi
genelleme yapabildigi yerlerdir. Keskin minimumlar agir1 uyum riskini temsil ederken, diiz
olanlar modelin farkl girislerde benzer davranmasini saglar.
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7.5 Momentum, Adam ve Optimizasyonun Modern YUzl
Klasik gradient descent yeterli degildir. Cilinkii yliksek boyutlu yilizeylerde, gradient ¢ok dalgali
olabilir, baz1 yonlerde ¢ok hizli diiserken bazi yonlerde neredeyse diiz olabilir. Bu nedenle
momentum temelli yontemler gelistirilmistir.
Momentum yaklasimi, gecmis gradient’leri akilda tutarak parametre gilincellemesini daha
plrizsiz hale getirir:
Vep1 = e + (1 — BV L(6)
Or+1 = 0t —NVL4q

Adam algoritmasi ise momentum ile RMSProp'un birlesmis halidir ve modern LLM egitiminde
siklikla kullanilir:

my = Byme_1 + (1 = B1)ge

Ve = Bove—g + (1= B2)g¢

m
Orr1 =06 —7

t
v+ €
Adam algoritmasinin basarisinin ardinda, gradient’in yoniinii ve 6lgegini ayr1 ayri takip etmesi
yatar. Dil modellemenin karmasik parametre uzayinda, bu adaptif giincellemeler kritik 6nem
tasir.
7.6 Egitim Dinamikleri: Ogrenme Hizinin Zamanla Azaltilmasi ve Miifredat Ogrenmesi
(Curriculum Learning)
Egitim boyunca 6grenme hizini sabit tutmak, ¢ogu zaman etkili degildir. Genellikle su yaklagim
izlenir:

Ne =10 f(1)
Burada f(t), zamanla azalan bir fonksiyondur. Kosinus ¢iriimesi (Cosine decay), dogrusal
curime) (linear decay, Kizisma+Ciirime (warmup + decay) gibi stratejiler LLM egitiminde
standart haline gelmistir.
Warmup 6zellikle dnemlidir. Egitimin ilk adimlarinda gradient’ler ¢ok dengesiz olabilir. Bu
nedenle 6grenme hiz1 yavasca artirilir:

learning rate

+ time

Miifredat 6grenmesi (Curriculum learning) ise modelin 6nce basit gorevleri, sonra karmasik
olanlar1 6grenmesini saglar; tipki bir 6grencinin 6nce temel kavramlar1 6grenip sonra soyut
matematige gecmesi gibidir.

7.7 Genelleme: LLM’ler Neden “Ezberlemiyor” da Ger¢ekten Ogreniyor?

Derin 6grenmenin en ilgin¢ yonlerinden biri, modelin kapasitesi ¢ok biiyiik olsa bile, dogru
egitimle agir1 uyum yapmamasidir. LLM’ler trilyonlarca kelime goriir ve milyarlarca parametre
icerir; ama bu parametreler veriyi birebir ezberlemek yerine, dilin genellestirilmis bir temsilini
ogrenir.

Bu durumu agiklamak i¢in teoride ii¢ ana argiiman kullanilir:
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Flat minima — iyi genelleme
Model, keskin minimum yerine genis ve diiz bir ¢dzlime yerlesir.

Implicit regularization (6rtik dizenleme)

e

SGD ve Adam gibi algoritmalar, farkinda olmadan modelin daha diizglin bir ¢6zim
bulmasini saglar.

o

Dilin dogal yapisinin diisiik boyutlulugu

6. Trilyon kelime bile, dilin i¢sel manifoldunun yalnizca yiizeyini temsil eder; model bu
manifoldun seklini 6grenir.

Bu sezgiyi s0yle bir manifold ¢izimiyle diistinebiliriz:
yiksek boyutlu uzay
! A\
/ dil A
f manifold \__
/ !

Model, bu manifold (¢ok ¢esitlilik) iizerinde etkili bir projeksiyon 6grenir.
8 — Transformer Mimarisi: Katmanlar, Attention, Pozisyonal Kodlama (Positional
Encoding) ve Istatistiksel Yorum
Biiyiik dil modellerinin kalbinde, artik neredeyse ikonik héle gelmis bir mimari vardir:
Transformer. “Attention is all you need” bashikli makaleyle ortaya ¢ikan bu yapi, dil
modellemesinde istatistiksel diisiinceyle lineer cebir’in bulustugu bir kesisim noktas: gibidir.
Yiizeyde gordiigiimiiz sey, iist iiste y1gilmis katmanlar, self-attention bloklari, residual (kalinti)
baglantilar ve normalizasyon katmanlarindan olusan uzun bir zincir. Fakat bu zincirin her
halkasi, istatistiksel bir anlam tasir.
Transformer’a uzaktan baktigimizda, giriste token dizisini alan ve ¢ikista her token i¢in yeni
bir temsil lireten bir fonksiyon goriiriiz. Bu fonksiyon aslinda, baglam kosullu bir olasilik
dagilimmi yaklasik olarak 6grenmeye calisir. Her katman, bu dagilimi daha rafine bir hale
getiren bir istatistiksel operator gibi diisiiniilebilir.
8.1 Girdi Temsili: Token’lardan Siirekli Vektorlere
Bir ciimlenin model tarafindan islenebilmesi i¢in, 6nce kelimelerin (ya da alt birim token’larin)
birer vektore doniistiiriilmesi gerekir. Bu siirecte her token, sozliikteki benzersiz kimligini
temsil eden bir indeksle baslar. Ardindan bu indeks, embedding matrisine bakilarak stirekli bir
vektorle eslestirilir. Eger embedding matrisini E € RV*%ile gosterirsek, burada V sozlik
bliytikliigii, d ise embedding boyutudur. Bir token’in vektorii basitce:

x¢ = Ey,

seklinde yazilabilir. Bu, istatistiksel agidan, kategorik bir degiskeni siirekli bir uzayda kodlayan
bir doniisiimdiir. Bu vektdrlerin tiimii bir araya geldiginde, climlenin ilk temsilini olusmus olur.
Ancak bu temsilin eksik bir yani vardir: Sira bilgisi. Yani model, “kedi kopegi kovaladi” ile



ISTATISTIKSEL YONTEMLERIN YENi BAHARI: BUYUK DiL MODELLERI (BDM)
108

L

“kopek kediyi kovaladi” ciimlelerini ayni ¢oklu-kiime gibi gorebilir. Bu problemi ¢ozmek igin
positional encoding (pozisyon kodlama) devreye girer.

8.2 Positional Encoding (pozisyon kodlama): Siranin Matematiksel izini Birakmak
Transformer mimarisinin en radikal taraflarindan biri, RNN ve LSTM’lerden farkli olarak,
stral1 islemi bir zorunluluk haline getirmemesidir. Tiim token’lar ayni anda islenebilir; fakat
bunun i¢in modelin pozisyon bilgisini baska bir yoldan edinmesi gerekir. Positional encoding,
tam da bu noktada devreye girer. Girdinin her bir pozisyonuna, konumu temsil eden bir vektor
eklenir.

Vaswani ve arkadaslarinin 6nerdigi siniis—kosiniis tabanli positional encoding formiilii su
sekildedir:

. pos
PE(pos,2i) = sin (100002i/d)

pos
PEpos2i+1) = €OS (W)

Burada pospozisyonu, i ise boyut indeksini temsil eder. Bu fonksiyonlar, farkli frekanslarda
saliimlar iireterek pozisyonun siirekli bir temsilini olusturur. Bu yaklasim, dilin sirali yapisini
Fourier benzeri bir tabana projekte etmek gibi diigiiniilebilir; her pozisyon, birden ¢ok frekans
bileseninin birlesimiyle kodlanir. Istatistiksel agidan bakildiginda, bu kodlama, siranm
kendisini rastgele bir etiket olarak degil, diizenli ve dlgiilebilir bir 6zellik olarak modellemenin
yoludur.
Sonugta, giristeki her token, icerik bilgisini tagiyan embedding vektdrii ile pozisyon bilgisini
tastyan positional encoding vektoriiniin toplamindan olusan bir temsil kazanir:
h® = x, + PE,
Bu hgo)vektérleri, Transformer’in derin katmanlarina giren ilk istatistiksel 6znelerdir.
8.3 Self-Attention: Kosullu Dagihmin i¢c Carpim Uzerinden Degerlendirilmesi
Transformer’in ruhu, self-attention mekanizmasidir. Bu mekanizmay1 soyut bir istatistiksel
operator olarak diistinmek oldukca faydalidir. Her token, diger token’lara olan ilgisini dlger; bu
ilgi, lineer doniistimler ve i¢ ¢carpimlar {izerinden sayisallastirilir.
Her token igin {i¢ farkli vektor hesaplanir: query (q;), (sorgu) key (k;) (anahtar) ve value (v;)
(deger) . Bunlar, giris temsilinin farkli agirlik matrisleriyle carpilmasiyla elde edilir:
qc = Wohe, ke = Wihy, v = Wyh
Buradaki Wy, Wk, Wymatrisleri, 0Ogrenilen parametrelerdir.  Biitiin  token’lar igin
hesaplandiginda, Q, K, Vmatrisleri olusur. Attention skorlari, query—key (sorgu-anahtar) i¢
carpimlariyla hesaplanir:
q: - kj
aj =
T
Bu skorlar, bir normalizasyon adimiyla olasilik dagilimina doniistiiriiliir:
)
7L exp(agy)
Ve nihayet, her token’in yeni temsili, diger tiim token’larin value vektorlerinin agirlikli
ortalamasi olarak elde edilir:
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Bu islemi istatistiksel bir bakisla okudugumuzda, self-attention’in, bir token’in kosullu
dagilimimi, diger token’larin “gizli 6zelliklerine” gore giincelleyen bir kernel operatérii gibi
davrandigini goriiriiz. q,ve kjarasindaki i¢ ¢arpim, bu iki token arasindaki benzerligi dlger;
softmax ise bu benzerlikleri birer olasilik agirligina doniistiiriir. Sonug, kosullu bir beklenen
deger hesabidir: “Baglamdaki diger token’lar1, bana ne kadar benzediginize gore tartiyorum ve
yeni temsilimi bu tartilmis ortalama tizerinden giincelliyorum.”
8.4 Cok Kafah Attention: Farkl Istatistiksel Bakis Acilar
Tek bir attention baslig1, dizideki iliskileri belirli bir projeksiyon uzayinda analiz eder. Ancak
dil, tek bir bakis agisiyla yakalanamayacak kadar ¢ok katmanlidir. Cok kafali (multi-head)
attention, bu nedenle devreye girer. Farkli bagliklar, Wy, Wy, Wy, matrislerinin farkli kopyalarin
kullanarak, ayn1 girdiyi farkli lineer alt uzaylara projekte ederler. Her baslik icin ayr1 ayri
attention uygulanir ve sonunda bu bagliklarin ¢iktilar: birlestirilir.
Bunu su sekilde yazabiliriz:

head; = Attention(QW, ", KW, vy

MultiHead(Q, K, V) = [heady; ...; head, |W,

Her baslik, dilin farkli bir istatistiksel 6zelligine odaklanabilir: biri uzun menzilli bagimliliklari,
biri sozdizimsel iliskileri, biri anlam benzerliklerini, bir digeri zaman—kip baglamlarini
yakalayabilir. Bu yapu, istatistiksel modellemede “karisim modelleri” veya “coklu ¢ekirdek™
kullanimiyla benzer bir mantik tasir. Ayn1 veriye farkli ¢ekirdekler uygulayip, sonuglari bir iist
uzayda birlestirmek gibidir.
8.5 Residual (kahnt) Baglantilar ve Layer (katman) Normalizasyon: Ogrenmenin
Stabilizasyonu
Transformer’in her katmaninda yalnizca attention yoktur; attention’n ardindan gelen bir feed-
forward ag1, ardindan residual baglant1 ve normalizasyon katmanlar1 da bulunur. Bu bilesenler,
yalnizca miihendislik ayrintilar1 degil, ayn1 zamanda istatistiksel kararlilik araglaridir.
Residual baglantilar, giris vektoriinii, katmanin ¢iktisina ekler:

h, = hi™ + SubLayer(h"

Bu yap1, gradyanlarin kaybolmasini engeller ve modelin derinligini artirirken egitim dengesini
korur. Istatistiksel agidan bakarsak, residual baglanti, her katmanda yapilan doniisiimii bir
“diizeltme terimi” gibi ele alir; her yeni katman, onceki tahmine kii¢iik ama anlamli bir
giincelleme ekler. Sanki model, “mevcut tahminimi tamamen ¢dpe atmiyorum, yalnizca lizerine
bir diizeltme yaziyorum” demektedir.

Layer normalization ise her token’in temsil vektoriinii, boyutlari1 boyunca normalize eder. Bir
vektor h igin:

h—
LayerNorm(h) = TM Oy+p
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Burada u ve o, vektor bilesenlerinin ortalamasi ve standart sapmasi; y ve [ ise 6grenilebilir
Olcek ve kaydirma parametreleridir. Bu normalizasyon, dagilimi istatistiksel olarak daha kararli
hale getirir; gradyanlarin asir1 dalgalanmasini engeller ve egitim siirecini hizlandirir. Yani
LayerNorm, parametre uzayinin belli bolgelerinde kaybolmamizi 6nleyen bir diizenleyici gibi
calisir.
8.6 Feed-Forward (ileri Besleme) Katmanlar: Yerel, Ama Giiclii Doniisiimler
Her attention blogunun ardindan gelen konum-bagimsiz feed-forward aglari, her token’in
temsilini kendi iginde doniistiiriir. Basit bir yapi ile:

FFN(h) = Woa(W h + by) + by

Bu dontisiim, istatistiksel 6grenme acisindan dogrusal olmayan regresyonun bir formudur.
Attention, kelimeler arasindaki iligkileri hesaplarken, feed-forward aglar1 ayni kelimenin igsel
ozelliklerini zenginlestirir. Ikisi bir araya geldiginde, hem baglamsal hem yerel bir istatistiksel
model elde ederiz.
8.7 Transformer’1 Biiyiik Resimde Okumak
Tiim bu bilesenler bir araya geldiginde, Transformer’in her katmanini su sekilde diistinebiliriz:
Once attention ile dizideki istatistiksel bagimliliklar hesaplanir, sonra bu bagimliliklar feed-
forward aglariyla islenir, residual ve normalizasyon ile stabil hale getirilir ve bir sonraki
katmana aktarilir. Katmanlar arttik¢a, temsil giderek daha soyut, daha genis bir baglami
kapsayan, daha karmasik istatistiksel 6zetler halini alir.
Bu siirecin graf diizeyinde bir tasviri, zihinde s0yle canlanabilir:
Girdi vektdrleri = Attention grafi -+ Yerel donidsimler - HNormalize edilmis yeni uzay
i | i

Katman 1 Katman 2 Katman L

Her katman, dilin istatistiksel yapisinin bagka bir boyutunu yakalayan bir filtre gibi ¢alisir.

9 — LLM Uygulama Alanlar: istatistiksel Temeller, Kavramsal Boyut ve Modelin “Alan
Anlayis1”

Biiyiik dil modelleri, yalnizca metin iireten sistemler degildir; ayn1 zamanda istatistiksel bilgi
isleme makineleridir. Bir hukuk metniyle tibbi bir raporun ayn1 model tarafindan iglenebilmesi,
dilsel yiizeyin gerisinde, istatistiksel bir yapilarin biitlinliigli olduguna isaret eder. Bu yapilarin
merkezinde, kelimelerin ve kavramlarin yiiksek boyutlu embedding uzayimnda modellenen
benzerlik iliskileri vardir. Fakat uygulama alanlar1 birbirinden keskin sekilde farklilastik¢a, bu
iligkilerin formu da degisir. Ornegin saglik alaninda “akut”, “kronik”, “prognosis”, “metastaz”
gibi terimlerin semantik uzakliklar1 tibbi kavramlar etrafinda kiimelenir; hukuk metinlerinde
ise “miilkiyet”, “kast”, “takdir yetkisi”, “yargi denetimi” gibi terimler kendi kategorizasyon
aglari iginde yerlesir.

LLM’lerin ¢ok yonliiliigliniin ardindaki temel istatistiksel gercek, “ortak embedding
manifoldunun bolgesel uzmanlagmaya izin vermesi’dir. Anlam uzayz siirekli oldugundan, bir
alanin kavramlar1 bagka bir alanin kavramlarindan tamamen ayr1 degildir; yalnizca manifoldun
farkli bolgelerinde toplanirlar. Dilin ¢ok alanli kullanimini miimkiin kilan sey de budur.

Bu noktada dil modelleri, ham sembollerle ¢alisan sistemler olmaktan ¢ikar; belirli alanlarin

bilgi dagilimlarin1 6grenmis istatistiksel yapilar haline gelir. Modelin gordiigii metinler, alan
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uzmanlhiginin dagilimini igerir. Bu dagilim, kayip fonksiyonunun i¢inde saklidir. Egitimin her
adiminda model, alanin “bilgi ylizeyini” biraz daha iyi tahmin etmeyi Ogrenir. Bunu su
istatistiksel ifade tzerinden anlayabiliriz:

0" = argmin Ey.p[—logps(X)]

Burada D, dagilim1 “saglik”, “finans”, “hukuk”, “bilimsel yayinlar” vb. alanlara yayilan bir veri
kiimesidir. Model, tiim bu alanlarin ortak dagilimini1 yaklasik 6grenir. Bu nedenle model, tek
bir alanin uzmani degildir; ¢oklu alanlarin ortak manifoldunu yakalamaya ¢alisan meta-6grenici
bir sistemdir.

Bu yetenek, dzellikle karmasik baglam bagimliliklarinda kendisini gosterir. Ornegin finans
alaninda bir metinde gecen “kaldira¢” kelimesi, saglik alaninda gecen “kaldirma kuvveti”
kavramindan tamamen farkli bir semantik alana isaret eder. Transformer’in ¢ok kafali attention
mekanizmasi, bu ¢oklu baglamlart ayristirir; kafalardan biri finansal baglami 6grenirken, bir
baskas1 fiziksel baglami &grenebilir. Bdylece model, baglami tanimayi bir istatistiksel
siniflandirma probleme doniistiirmeden, dagilim i¢i varyasyon olarak isler.

Embedding Uzayinda Alan Ayrismasi

LLM’lerin egitiminde ortaya ¢ikan ilging fenomenlerden biri, embedding uzayinda alanlarin
dogal olarak ayrigmasidir. Saglik terimleri bir araya kiimelenir, finansal terimler baska bir
bolgede yogunlasir, hukuki kavramlar ise farkli bir alt uzayda konumlanir. Bu ayrisma, PCA
veya t-SNE gibi yontemlerle gorsellestirildiginde daha belirgin hale gelir.

Basit bir gizimle:

Saglik alani - esess
Finans alani - *eeed
Hukuk alani - FYYYYy

Bilimsel alan - [ 1 | [ ]

Bu kiimeler birbirine uzak goriinse de, manifoldun tamami baglantili bir yiizey olusturur. Bu
durum, modelin bir alandan digerine transfer edebilme kapasitesini agiklar. Bir hukuk metninde
gegen tibbi bir terim, modelin tibbi manifold bolgesini aktive eder; ama climlenin geri kalan
hukuk manifoldunda kalmaya devam eder.
Bu esneklik, LLM’lerin ¢ok alanli uygulamalarint miimkiin kilar.
Alan Uzmanhgmnin istatistiksel Dogasi
Birkac y1l 6ncesine kadar “alan modeli” fikri, bir yapay zekanin belirli bir disipline 6zel olarak
egitilmesi anlamima geliyordu. Bugiin ise alan uzmanligi, embedding manifoldunun belirli
bolgelerinin daha keskin, daha yiksek ¢ozunirlikli hale gelmesiyle olusuyor. Bu durum, su
istatistiksel metaforla aciklanabilir:

e Genel bir LLM = genis ama diisiik ¢6ziiniirliiklii bir anlam manifoldudur.

e Bir alana ince-tuning (fine-tuning) = manifoldun belli bir bolgesinin daha yiksek
¢Oziintirliikle islenmesidir.

e Uzman model = manifoldun yalnizca bir bolgesini temsil eden dar ama ultra-yogun bir
modeldir.
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Bu farki matematiksel bir benzetmeyle gostermek istersek, genel LLM’in tahmin ettigi dagilim:
pe(w | )

iken, alan ince ayarindan sonra tahmin edilen dagilim:

p@'(W | c,4)
seklindedir. Burada A, alan bilgisini temsil eder. Bu, kosullu bir dagilimin alt dagilima
doniigsmesi gibidir.
Baglam-Uygulama Ayrismasinin Onemi
Bir LLM'in uygulama basarisi, yalnizca verinin igerigine degil, baglamin istatistiksel iglenisine
baglidir. Ayn1 kavram, farkli baglamlarda farkli kosullu dagilimlar iiretir. Ornegin “Tedavi
basarili oldu.” climlesi saglik alaninda yiiksek olumlu bir sonug bildirirken, finans alaninda
“Tedbir basarili oldu.” ifadesi yatirim stratejisinin etkili oldugunu anlatir.
Bu iki baglamin ayirt edilebilmesi, attention’in baglam segici yapisindan gelir. Self-attention’in

matematiksel formulinde:
-

qtkj

Jax

baglam g, ’nin degerleri, alan bilgisini otomatik olarak agiga ¢ikarir. Boylece model, alan odakl

)

a;; = softmax(

bir filtreleme islemini istatistiksel olarak egitilmis parametrelerle gerceklestirir.
Modelin Alanlar Arasi1 Genelleme Yetenegi Neden Bu Kadar Giiclii?
Iki temel sebep var:

1. Dil alanlar arasi paylasilan kavramsal yapilar icerir.

Mantik, nedensellik, tanimsal iligkiler, kavramlarin hiyerarsisi alanlar arasinda ortak
geometri olusturur.
2. Model cok biiyiik ve cok cesitli veriyle egitilmistir.

Bu veri, dilin tiim yiizeysel varyasyonlarinin ortak dagilimini 6grenmesine imkan tanir.
Boylece model, bir alandaki ifadeleri bagka bir alandaki kavramlarin baglamiyla bile
iliskilendirebilir. Buna benzer bir fenomen, istatistiksel fizikteki “genellesmis simetriler”
kavramina benzetilebilir; farkli ylizeylerdeki davranislar ayni temel kurallarla yonetilir.
Saghk, Finans, Hukuk ve Bilimsel Metinlerde LLM Davramsi: Alan istatistigi ve Ornek
Vaka Analizleri
Biiyiik dil modelleri, farkli alanlara yayilan metinleri islerken aslinda ayni ¢ekirdek istatistiksel
mekanizmalar1 kullanir, fakat bu mekanizmalarin ylizeye yansimasi alanin dogasina gore
degisir. Saglik alaninda kullanilan dil, yiiksek riskli kararlarla i¢ i¢edir; finans metinlerinde
belirsizlik ve gelecek tahmini 6n plandadir; hukukta normatif yapi, yorum ve igtihat ag1
hakimdir; bilimsel metinlerde ise kanitin giicii, deneysel tasarim ve istatistiksel testler dilin
icine gomiilmiistiir. LLM bu alanlarin her birinde ayn1 matematiksel kalple calisir, ancak
ogrendigi dagilimlar farklilasir.

Saglik alanindan baslayalim. Klinik metinler, tanilar, laboratuvar sonuglari, tedavi planlari ve
prognoz degerlendirmeleri gibi bilesenlerden olusur. Bir LLM, bu tiir metinlerle egitildiginde,
aslinda ortiik olarak bir tiir kosullu olasilik modeli 6grenir. Ornegin bir hastanin semptom
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vektorlini x, olasi taniy1 yile gosterirsek, model dolayli bigimde pg (v | x)dagilimina yaklasir.
Burada klasik istatistikten aliskin oldugumuz duyarhilik (sensitivity) ve 6zgiilliik (specificity)
gibi kavramlar devreye girer. Bir tan1 modelinin duyarlilig1

Sensitivite = P
ensitivite = — TN
ve ozgulligi
Spesifisite = N
pesifisite = — TP

seklinde tanimlanir. LLM dogrudan bu oranlar1 hesaplamasa bile, iirettigi 6nerilerin dogrulugu
ayn1 yapidaki sayimlar iizerinden degerlendirilebilir. Bir klinik LLM, 6rnegin siipheli bir
akciger grafisi i¢in “yiiksek olasilikla pndmoni” dediginde, aslinda posterior bir olasilik tahmini
yapar. Bu tahminin kalitesi, geleneksel istatistikteki ROC egrileri ve AUC degerleri ile
olgiilebilir. ROC egrisinde, modelin esik degerini degistirirken, dogru pozitif orantyla yanlis
pozitif oraninin izledigi egri, LLM nin tani kararlarinin ne kadar ayrisabilir oldugunu gosterir.
Bu tiir degerlendirmeler, saglik alaninda LLM kullaniminin yalnizca “dil” degil, ayn1 zamanda
saf istatistiksel performans meselesi oldugunu gosterir.

Finans alaninda ise dil, sayilarla birlikte akmaktadir. Risk raporlari, bilango analizleri, piyasa
yorumlari, arastirma notlart gibi metinler, hem deterministik hesaplar hem de olasiliksal
senaryolar igerir. LLM’ler bu metinleri islerken genellikle iki diizeyde ¢alisir: yiizeyde dogal
dil Uretir, derinde ise risk ve beklenti kavramlarini igeren bir istatistiksel diinya kurar. Bir
finansal enstriimanin beklenen getirisi

E[R] = Z piti

seklinde yazilirken, varyans ve kovaryans yapilar1 portfoy riskini belirler. Ornegin iki varlik
icin kovaryans

Cov(Ry,R;) = E[(Ry — 1) (Ry — u2)]

ifadesiyle verilir. LLM bu formiilleri bilmek zorunda degildir; ancak finans literatiiriiniin i¢inde
biliylimiisse, metinlerden 6grenmis oldugu iliskiler bu kavramlarla uyumlu bir dagilim davranisi
dretir. Bir raporda gegen ‘“volatilite artis1”, “asagi yonlii risk”, “korelasyon ¢okiisii” gibi
ifadelerin embedding uzayinda olusturdugu kiimelenmeler, aslinda risk kavraminin semantik
manifold i¢indeki geometrisini temsil eder. Boylece model, yalnizca “ciimle kurmaktan” ¢ok,
finans diinyasinin istatistiksel sezgilerini yeniden ifade etmeye baslar.

Hukuk alani, LLM’ler i¢in biraz farkli bir meydan okumadir. Ciinkii burada yalnizca olgular
yoktur; ayn1 zamanda normatif degerlendirmeler, kural yorumlari, igtihat zincirleri ve ¢ogu
zaman belirsizligin dil lizerinden yonetildigi uzun metinler vardir. Bir mahkeme kararimni
diisindiigiimiizde, olgular kiimesini F, hukuk normlarinit N, yorum kurallarini ise /ile gosterip,
kararin sonucunu Colarak diisiinebiliriz. Teorik olarak

C~f(F,N,I
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seklinde soyut bir fonksiyon yazmak mumkunddr. LLM, buyik miktarda karar metniyle
karsilastiginda, bu fonksiyonun istatistiksel bir yaklasik¢isi haline gelir. Her yeni dava anlatimi,
yeni bir Fvektorudir; karar, C’nin alanindaki bir noktadir; normlar ve igtihatlar ise metinler
icinde gomiilii birer bilgi kaynagidir. Model, bu iliskileri dogrudan formiilize etmese de, dil
icindeki tekrarlardan G6grenir. “Davacinin talebinin reddine” dair kaliplar, belirli olgusal
desenlerle birlikte goriillmeye baslandiginda, LLM bu desenleri i¢sel olarak modeller.

Bu noktada hukuki metinler i¢in olasiliksal bir bakis acist devreye girer. LLM, belirli bir olgu
seti Fverildiginde, belirli bir karar tiiriinii ¢ tiretme egilimindedir. Bunu su sekilde yazabiliriz:

pe(C = c | F,baglam)

Bu dagilim, kat1 deterministik bir hukuk anlayisindan uzak, ama pratik hukuki uygulamanin
belirsizligini yansitan bir modeldir. Bu nedenle LLM’lerin hukuk alaninda kullanimi, yalnizca
metin Ozetleme ya da tematik siiflandirma degildir; ayni zamanda, hukukun istatistiksel
yUzunin bir yansimasi haline gelir. Elbette burada etik ve normatif riskler de biiyiiktiir; bunlara
bir sonraki bdliimde donecegiz.

Bilimsel metinler ve akademik literatiir, LLM’lerin belki de en ¢ok ¢ekildigi alanlardan biridir.
Ciinkii bu metinler, zaten bastan sona istatistiksel kavramlarla oriliidiir. Bir klinik arastirma
raporunda p-degeri, giiven araligi, etki biiyiikliigii; bir fizik makalesinde hata gubuklari, 6lgtim
belirsizlikleri; bir psikoloji ¢alismasinda varyans analizi ve regresyon modelleri dolagir. LLM,
boyle metinlerle egitildiginde, adeta istatistiksel diisiincenin dil i¢indeki izlerini takip etmeyi
ogrenir. Ornegin bir hipotez testini ele alalim. Bos hipotez H,, alternatif hipotez H;ve test
istatistigi T (X)ile temsil edildiginde, p-degeri

p = P(T(X) = T(xobs) | Ho)

seklinde tanimlanir. LLM bu formiilii bilmek zorunda degildir; ancak binlerce makalede aym
yap1 ile karsilastiginda, “diisiik p-degeri” ifadesinin “istatistiksel olarak anlamli” kararina
baglandigini, “gliven araligi 0’1 igermiyorsa” ifadesinin belirli sonuglarla beraber goriindiigiinii
ogrenir. Bu, diisiincenin istatistiksel kaliplarinin dil tizerinden modele sizmasidir.

Bilimsel alanlarda LLM kullanimi, yalnizca metin tiretimi ile sinirhh kalmaz. Model, deney
tasarimi Onerileri, veri analizi adimlarinin planlanmasi, olas1 yanlilik kaynaklarinin listelenmesi
gibi daha derin seviyelerde de rol oynayabilir. Bir deneyde karistirict degiskenleri
(confounders) belirlemek, aslinda bir tiir grafik model problemi olarak goriilebilir; model,
metinden yola ¢ikarak hangi degiskenlerin hangilerini etkileyebilecegine dair sezgisel bir graf
cikarir. Bu graf, formel olmasa bile, istatistiksel diisiinceye olduk¢a yakindir.

Tiim bu alanlarda ortak bir motif belirir: LLM, dilin i¢inde gomiilii istatistigi emer. Saglikta
tan1 olasiliklari, finansda risk dagilimlari, hukukta olgu—sonuc iliskileri, bilimde hipotez
testleri; hepsi dilsel kaliplar {izerinden modele tasimir. Model, bu kaliplarin frekansini,
baglamlarini, birlikte goriinme bi¢imlerini 6grenir ve sonunda, sadece grameri degil, alanlarin
istatistiksel reflekslerini de i¢sellestirmis bir yap1 haline gelir.

Uygulama Alanlarinda ileri Seviye Davrams Analizi, Vaka Ornekleri ve Istatistiksel Hata
Dinamikleri

Saglik, finans, hukuk ve bilimsel metinlerde LLM davranis1 yalnizca kavramlarin anlamiyla
degil, ayn1 zamanda bu kavramlarin birbirleriyle kurdugu istatistiksel iligkilerle belirlenir. Bir
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modelin belirli bir vakayr nasil yorumladigi, kelimelerin embedding uzayindaki
konumlarindan, attention basliklarinin baglami nasil agirliklandirdigina kadar genis bir
mekanizma Orgisiiniin {iriiniidiir. Bu nedenle uygulama alanlarinda model performansini
degerlendirirken, yilizeysel metriklerden ¢ok daha derine inmek gerekir. Model, bazen bir
kelimeyi yanlis anlamaz; o kelimenin istatistiksel konumunu yanlis okur. Bu boéliimde bu tiir
karmasik olaylarin i¢ isleyisini inceleyecegiz.

Once saglik alaninda tipik bir senaryo diisiinelim. Bir klinik raporda su ciimle yer alsin:
“Hastanin karin bolgesinde 48 saat i¢inde ilerleyen lokalize agr1 mevcut olup, bulgular apandisit
ile uyumludur.” Iyi egitilmis bir LLM, burada “ilerleyen agri”, “lokalize”, “apandisit ile
uyumlu” gibi medikal ipuglarini kullanarak taniy1 dogru yonde tahmin eder. Fakat model, ayn1
ciimle i¢inde gecen bagka bir terimin—o0rnegin “gaz sikayeti”—fazla agirlik almasi halinde,
olasilik dagilimi yanlis bir semantik yonelime kayabilir. Bu olay, attention mekanizmasinin
istatistiksel dengesizliginden kaynaklanir: belirli token’larin key vektorleri, modelin egitim
verisindeki dagilim nedeniyle gereginden fazla “cekici” olabilir. Eger modelin egitiminde gaz
sikayeti sik¢a benign (tehlikesiz) durumlarla eslesmisse, posterior olasilik dagilimi su sekilde
degisebilir:

p(akut apandisit | x) — p(gaz distansiyonu | x)

Bu, salt kelime—kelime eslesmesi degil, embedding uzayindaki semantik yakinliklarin dncelik
kazanmasindan kaynaklanir. Klinik raporlarin diizensiz yapisi, kisaltmalar, terminolojideki
degiskenlik ve baglamsal atlamalar bu istatistiksel dalgalanmayi biiyiitebilir. Bu nedenle saglik
modellerinde ¢ok sik kullanilan bir yaklasim, 6zel egitilmis domain-adaptive (alan uyarlamali)
fine-tuning (ileri besleme) ve yapisal regularization yontemleridir; modelin karar uzaymin
belirli bolgelerinin asir1 aktif olmasini engeller. Istatistiksel olarak bu durum, posterior’u
yeniden sekillendiren bir prior eklemek gibidir.
Finans alaninda bir 6rnek ele alalim. Bir analist raporunda “Likidite riski kisa vadede artti,
ancak bilanco yapist gii¢lii oldugu i¢in uzun vadeli temerriit riski diisiiktiir.” ifadesi ge¢sin. Bu
climlede kisa vadeli risk ylikselirken uzun vadeli risk diismektedir; yani metin iki farkli zaman
ufkunda iki farkli olasilik dagilimini ima eder. LLM’ler ¢ogu zaman bu tiir ¢ok katmanli risk
ifadelerini agirliklandirmakta zorlanir. Ciinkii embedding uzayinda “risk artisi” ve “risk
azalmas1” terimleri genellikle giiclii, karsit semantik vektorler iiretir ve model bu karsitligi tek
bir eksen iizerinde islemeye egilimlidir. Oysa burada iki eksenli bir yap1 vardir: zaman ufku ve
risk yonii. Bu durum matematiksel olarak soyle temsil edilebilir:

p(risk | kisa) # p(risk | uzun)
Fakat LLM, ¢ogu durumda bu iki kosullu dagilimi tek bir golge dagilimda birlestirir:

pe (risk | baglam)

Bu golge dagilim, bazen kisa vadeli sinyalleri uzun vadeli baglamlara tasir. Bu istatistiksel
karisma, finans modellerinde sik goriilen yanls ¢ikarimlarin kaynagidir. Ornegin model, kisa
vadeli volatilite artisin1 tim ufuklara genelleyebilir. Bu, risk modellemede “volatilite
klasterlesmesi” fenomenine benzer bir bi¢cimde, embedding klasterlesmesinin hatali bir
yansimasidir. Bu nedenle finans LLM’lerinde baglam ayristiric attention maskeleme teknikleri
kullanilmaya baglanmistir; kisa vadeli ifadelerin uzun vadeli baglam agirliklarin1 bozmasini
engeller.



ISTATISTIKSEL YONTEMLERIN YENi BAHARI: BUYUK DiL MODELLERI (BDM)
116

L

Hukuk alaninda hata dinamikleri ¢ok daha inceliklidir. Bir dava Ozetinde “Samigin kasti
bulunmadigindan ceza tayin edilmemistir.” climlesi gegtigini diisiinelim. Model, burada “kastin
bulunmamas1” ile “ceza tayin edilmemesi” arasindaki hukuki nedenselligi dogru yakalayabilir;
fakat ayn1 baglamda soyle bir ifade yer aliyorsa—“Bu nedenle maddi tazminat talebi
reddedilmistir.”—model bazen kast—ceza iliskisini maddi tazminata da genelleyebilir. Oysa
ceza hukuku kast ile ilgilidir; maddi tazminat ise 6zel hukuk sorumlulugudur ve ¢ogu zaman
kusur kavramiyla iligkilidir. LLM bu ayrimi her zaman igsellestirmez. Bu hata, istatistiksel
olarak “yanlis nedensel bagimlilik 6grenme” problemiyle oOrtiisiir. Bir olgu kiimesi F, iki farkl
sonug kiimesi C; (ceza hukuku) ve C,(6zel hukuk) ile iliskili olabilir:
p(Ci 1 F) # p(C, | F)
Fakat model, egitiminde bu iki iligkiyi ayr1 ayr1 gormediginde, tek bir birlesik dagilim 6grenir:
pe(C | F)
Bu durum, hukuki baglamlarin ayrigsmasini engeller ve LLM nin karar tavsiyelerinde “alanlar
arasi asir1 genelleme” denilen bir fenomen yaratir. Bu fenomen hem etik hem hukuki a¢idan
kritik bir risk olusturur; ¢iinkii yanlis alana ait normatif sonuglar tahmin edilirse, model yanilgisi
gercek hayatta ciddi karar hatalarina yol agabilir.
Bilimsel alanlarda ise modelin hatalar1 genellikle metodolojik kavramlarin embedding
uzayindaki yaklik iliskilerinden dogar. Ornegin “korelasyon” ve “nedensellik” kavramlarini
ele alalim. Bu iki kavram semantik olarak yakin goriiniir, ancak istatistiksel olarak ayridir. Bir
caligmada “iki degisken arasinda giiclii bir korelasyon bulundu” ifadesi, LLM tarafindan bazen
“A, B’ye neden oluyor olabilir” seklinde yorumlanabilir; ¢linkii metinlerde korelasyon
bulgusunun ¢ogu zaman nedensel spekiilasyonlarla bir arada gectigi drneklerle karsilagmistir.
Bu durumda model, su yanlis ¢gikarimi yapmaya egilimli olabilir:
Corr(X,Y) = Caus(X = Y)
Opysa istatistikte bilindigi gibi, korelasyon su sekilde tanimlanar:
Cov(X,Y)
O0x Oy
ve hicbir sekilde nedenselligi garanti etmez. Model bu farki sezgisel olarak ayirt edemediginde,
bilimsel yaz1 iiretiminde hatali c¢ikarimlar yapabilir. Bu nedenle bilimsel LLM
uygulamalarinda, nedensellik ve korelasyon kavramlar1 embedding uzayinda 6zel olarak
ayrigtirilir; bu ayristirma genellikle kontrastif dgrenme teknikleri ile yapilir. Istatistiksel olarak
bu islem, iki kavramin vektor dagilimlarini farkli modal manifoltlara itmek gibidir.
Bu hatalarin tiimii, LLM’lerin “dil alanlarinin istatistiksel haritalarini” nasil 6grendigiyle
ilgilidir. Saglik, finans, hukuk ve bilimsel disiplinler, dogal dilin i¢cine gomiilii farkli istatistiksel
iliskiler tagir. Bir LLM bu iligkileri dogru 6grenirse alan uzmanhigi gosterir; yanlis 6grenirse

Pxy =

alan-6zel hatalar tiretir. Bu nedenle model degerlendirmesi yalnizca dogruluk, F1 veya BLEU
gibi yiizeysel metriklerle degil, alan istatistiginin i¢ yapisin1 hedefleyen daha karmasik
yontemlerle yapilmalidir.

Uygulama Alanlarinda ileri Davrams Analizi

Uygulama alanlarin1 konusurken simdiye kadar hep metin merkezli 6rnekler tizerinden
yirtidiik; fakat modern LLM ekosisteminde metin artik ¢ogu zaman tek veri formu degil.
Saglikta goriintiileme verileri, sensor ¢iktilar1 ve yapilandirilmis elektronik saglik kayitlari;
finansta zaman serileri, fiyat akislar1 ve islem defterleri; hukukta sema haline getirilmis
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mevzuat aglar1 ve ictihat grafikleri; bilimsel diinyada ise deneysel tablolar, grafikleri ve
sekillerle birlikte aniliyor. LLM’ler bu farkli modalitelerle iliski kurmaya basladiginda,
istatistiksel davranislart da yeni bir boyuta taginiyor.

Ornegin ¢ok modlu bir klinik sistemde metin, goriintii ve laboratuvar verisi ayn anda isleniyor
olsun. Metin tarafinda bir LLM, goriintii tarafinda bir konvoliisyonel ag veya transformer
tabanli gorsel model, sayisal tarafta ise klasik istatistiksel 6zetler (ortalama, varyans, z-puanlari)
devreye giriyor. Bu durumda model aslinda ortak bir latent uzayda birlesmis tli¢ farkli dagilimi
ogrenmeye calisiyor. Metin igin grenilen temsil vektorlerini A(¢¢*9) | gériintl icin A9,
sayisal bulgular i¢in h‘*P)ile gosterirsek, cok modlu bir fiizyon katmani bu temsilleri birlestirip
tek bir birlesik temsil zUretiyor:

7 = f(h(text), h(img)' h(lab))

Bu birlesik temsil, tan1 ya da risk tahmini gibi bir ¢iktiya baglandiginda, artik tek bir
modalitenin hatalar1 degil, tiim modalitelerin ortak istatistiksel dengesizlikleri rol oynamaya
basliyor. Ornegin gériintii verisinde egitimin biiyiik kismi belirli bir demografiye aitse, metin
tarafinda bu demografi az temsil edilmis bile olsa, birlesik model belirli gruplar Gzerinde
sistematik yanlilik iiretebilir. Bu, ¢ok modlu domain shift’in tipik bir 6rnegidir.

Domain shift, yani egitim dagilimi ile kullanim anindaki dagilimin farklilagsmasi, LLM’lerin
tim alanlardaki en kritik istatistiksel problemlerinden biridir. Teorik cercevede bunu basitce
sOyle yazabiliriz: Egitim sirasinda gozlemlenen dagilim P,;,(X,Y), kullanim sirasinda
karsilasilan dagilimdan P (X,Y)farklidir. En sik rastlanan bigimi, kovaryat kaymasi denen
durumdur:

Pirain(X) # Pei(X), P(Y | X) yaklaSik sabit

Bu, 6zellikle finans ve saglik alaninda cok tipiktir. Pandemi basladiginda onceki yillarin hasta
profilleriyle yeni vaka profilleri arasindaki fark, bir gecede tiim klinik modelleri domain shift
ile yiiz ylize birakmistir. Benzer sekilde, finansal kriz giinlerinde normal donemlerde hig
goriilmeyen fiyat hareketleri, egitilmis modellerin tahmin uzayinin disina diiser. LLM’ler de bu
tiir kaymalarda, egitimde hi¢ gérmedikleri baglam kombinasyonlarini liretmek zorunda kalir ve
bazen istatistiksel sezgilerini tamamen kaybedebilir.
Domain shift’in daha karmasik bir tiirii, etiket dagilimmin kaydigi label shift durumudur:
Ptrain(y) * Ptest(y)
Hukuk alaninda 6rnegin belirli bir donemde agilan dava tiirlerinin dagilimi degistiginde, gegmis
ictihat {lizerinden egitilmis model, yeni donemin agirliklarini yansitamaz. Bir anda idari
davalarin orani artmigsa, eski karar metinlerine dayanan bir LLM, idari yargidaki yeni
egilimleri dogru yorumlayamayabilir. Bu, modelin “tarihsel prior”larinin giincel dagilimla
uyumsuz héle gelmesi anlamina gelir.
Domain adaptasyonu bu noktada devreye girer. Modern LLM pratiklerinde genellikle iki tur
adaptasyon kullanilir: alan uyumlu 6n-egitim (domain-adaptive pretraining) ve ince ayarl
gorev egitimi (fine-tuning). Alan uyumlu 6n-egitimde model, genel dil veri kiimesinden sonra
sadece belirli alanin metinleri {izerinde ek bir dil modelleme asamasina tabi tutulur. Bu,
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parametrelerin o alanin tipik istatistiksel kaliplarina dogru kaydirilmasi anlamina gelir.
Matematiksel olarak, modelin 6nce genel dagilimi

Po (x)

ogrendigini, ardindan alan dagilimina gore bir glincelleme yaptigini diisiinebiliriz:
Por (x) X pg(x) - wa(x)

Burada w, (x), alan A’ya ait 6rnekleri agirliklandiran bir terim gibi diistiniilebilir; teknik olarak
dogrudan boyle uygulanmasa da, sezgisel olarak alan egitimi posterioru alan yoniinde
giinceller. Fine-tuning ise belirli bir goreve kosullu dagilimi 6grenir. Ornegin saglik alaninda
“metinden ICD kodu tahmini” gibi bir gérevde model, artik

pe (v | x,A)

seklinde daha dar bir dagilimi optimize eder.
Bu adaptasyon siireglerinde LoRA gibi diisiikk dereceli adaptasyon tekniklerinin giderek 6ne
cikmasi, istatistiksel acidan sunu anlatir: Modelin tiim agirliklarini degistirmek yerine, yalnizca
diisiik riitbeli bir alt uzay1 giincellemek ¢cogu zaman yeterlidir. Biiyilik dil modelinin ¢ekirdegi
sabit kalirken, alan-0zel kiiglik matrisler eklenir. Sembolik olarak sdyle yazilabilir:

Wyeni = Weski + AB T

Burada Ave Bkiigiik boyutlu matrislerdir. Bu yapi, lineer cebir agisindan diisiik riitbeli bir
diizeltme, istatistiksel a¢idan ise genel prior iizerine alan-0zel bir posterior duzeltmesi gibidir.
Boylece model, hem genel dili hem de alanin 6zgiin dilini tagiyabilir.

Graf yapilariin entegrasyonu da uygulama alanlarinda giderek énem kazamiyor. Ozellikle
hukuk ve bilimsel metinlerde, kavramlar arasinda agik¢a tanimlanmus iliskiler vardir: mevzuat
maddeleri bagka maddelere atif yapar, makaleler birbirini kaynakca {izerinden iligkilendirir. Bu
iligkileri grafikler halinde temsil etmek miimkiindiir. LLM, metni islerken bu grafiklerden gelen
yapisal sinyalleri de kullanirsa, artik yalnizca siradaki kelimeyi tahmin eden bir model degil,
ayn1 zamanda bilgi aginda gezinmesini bilen bir ylirliylicii haline gelir. Rastgele yliriiyiis
(random walk) kavrami burada 6n plana ¢ikar:

; . Wij
P =jlve =1) e Wi

Bu gecis olasiliklar1 temsili, bir makaleden digerine, bir igtihattan digerine atlayan bir gezginin
davranigini tanimlar. Bir LLM bu yiiriiyiisii metin iiretimi ile birlestirdiginde, bazen metnin
icinde gizli bir graf lizerinde gezinir; atiflara, referanslara ve kavramsal baglantilara gore igerik
uretir. Bu, Ozellikle bilimsel Ozetleme ve hukukta karar analizi gibi gorevlerde modelin
istatistiksel davranigini belirgin bi¢imde zenginlestirir.

Tim bu mekanizmalar —¢ok modlu veri, domain shift (alan sigramasi), domain adaptasyonu,
diisiik riitbeli diizeltmeler, grafik entegrasyonu— uygulama alanlarindaki LLM davraniginin
yizeyde gordiigimiiz “akilli cevaplardan” ¢ok daha karmasik bir istatistiksel altyapiya
dayandigin1 gosteriyor. Bu altyap1 dogru tasarlandiginda model giiven verir; yanlis ya da eksik
tasarlandiginda ise sistematik hatalar ve derin yanhliklar iretir.
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Boylece uygulama alanlar1 béliimiiniin sonuna yaklasirken, dogal olarak su soruya geliyoruz:
Tim bu istatistiksel mekanizmalar, risk ve belirsizligi nasil yonetiyor? Yanlilik, adalet,
giivenilirlik ve “hallucination” dedigimiz olgu, modellerin altinda yatan istatistiksel siire¢lerde
nasil ortaya ¢ikiyor? Simdi bu sorulara gegme zamani.

Istatistiksel Riskler, Yanlhhk (Bias), Belirsizlik ve Giivenilirlik

Biiyiik dil modellerinin hayranlik uyandiran tarafi oldugu kadar tedirgin eden tarafi da, son
derece kendinden emin climlelerle yanlis, eksik veya tarafli sonuglar tiretebilmeleridir. Bu olgu,
cogu zaman haliisinasyon (hallucination) diye adlandiriliyor; ancak gercekte istatistiksel bir
fenomenle karsi karsiyayiz: Model, aslinda bildigi dagilimin disindaki noktalara da aym
Ozgiivenle olasilik atamaya egilimli. Bu, belirsizligin dogru yonetilememesinden, kalibrasyon
hatalarindan ve verinin kendisinde var olan yanliliklardan besleniyor.

Belirsizligi anlamak i¢in 6nce iki temel kategoriye ayirmak faydali: aleatorik (sansa bagli) ve
epistemik (hakikatle ilgili~biligsel) belirsizlik. Aleatorik belirsizlik, doganin igsel
rastgeleligiyle ilgilidir; 6rnegin bir zarin atilmasinda kag¢ gelecegini bilemeyiz, ¢linkii siire¢
rasgele tanimlidir. Epistemik belirsizlik ise modelin bilgisizliginden kaynaklanir; yeterince veri
gormedigi i¢in emin degildir. LLM’ler i¢in bu ayrim, su sekilde yorumlanabilir: Dilin kendi
dogasindan gelen ¢ok anlamlilik ve baglam belirsizligi aleatorikken, modelin hi¢ gormedigi bir
alanin jargonunu yanlis anlamasi epistemiktir.

Saf istatistikte belirsizlik ¢cogu zaman dagilim {izerinden ifade edilir. Bir tahmin modeli i¢in
giiven araligi cizilir, posterior dagilim hesaplanir ya da tahmin birlikte bir varyans degeri
raporlanir. LLM’ler ise genellikle yalnizca en olas1 kelimeyi veya ciimleyi sunar. Oysa model
bir yanit verdiginde, i¢sel olarak bir olasilik dagilimina sahiptir. Bu dagilimin kalibrasyonu
onemlidir. Tyi kalibre edilmis bir modelde, yiizde 80 giivenle yaptigi tahminler gercekten de
vakalarin yaklasik yiizde 80’inde dogru ¢ikar. Bunu dlgmek icin kullanilan metriklerden biri
beklenen kalibrasyon hatasidir (expected calibration error, ECE):

M

| By |

ECE = Z ™ | aco(Bp) — conf(By,) |
m=1

Burada Bjgiliven araligina gore bolinmiis 6rnek gruplarini, acc(B,,)0 gruptaki gercek
dogrulugu, conf(B,,)ise modelin rapor ettigi ortalama giiveni ifade eder. LLM’ler pratikte
siklikla asir1 kendine gilivenli davranirlar; yani confdegeri acc’den biiyiiktiir. Bu asir1 6zgiiven,
modelin “yanlis halde bile dogruymus gibi konusmas1” fenomenini yaratir.

Yanlilik (bias) ise baska bir katmandan gelir. Egitim verisi, toplumdaki gii¢ iliskilerinin, tarihsel
esitsizliklerin, dildeki stereotiplerin bir yansimasidir. Model, bu veriler {izerinden dil dagilimini
ogrenirken, ayrimci kaliplar1 da istatistiksel bir “gercek” gibi i¢sellestirebilir. Ornegin belirli
mesleklerin belirli cinsiyetlerle daha sik birlikte anilmasi, embedding uzayinda meslek
vektorlerinin cinsiyet vektorlerine kaymasina neden olabilir. Bunu sezgisel bir vektor hesabiyla
temsil edebiliriz:

v(doktor) — v(erkek) =~ v(miihendis) — v(erkek)

gibi iligkiler giiclenirken,
v(doktor) — v(kadin)
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vektorli daha zayif kalabilir. Bu tiir kaymalar, modelin iiretiminde sistematik dnyargilara yol
acar; kadin doktor yerine erkek doktoru 6rneklemesi daha olasi hale gelir. Istatistiksel bakisla,
bu bir tiir 6rnekleme yanhiligidir; egitim dagiliminda belirli kombinasyonlarin sik, bazilarinin
seyrek olmasi, modelin tahmin uzayini egri bir bigimde sekillendirir.
Yanlilig1 analiz etmek i¢in cesitli adalet metrikleri kullanilir. Ornegin, iki grup i¢in pozitif karar
olasiliklarini karsilagtirdigimizda, esitlik beklentisi

PY=11A=0)~PF¥ =114=1)

seklinde ifade edilebilir. Burada A duyarli bir 6zellik (6rnegin cinsiyet, etnik koken), ¥ model
kararini temsil eder. LLM bazl1 sistemlerde bu tiir oranlar dogrudan ¢ikmayabilir; fakat belirli
senaryolarn modelle nasil ifade edildigine bakilarak dolayl olarak 6lgiilebilir. Ornegin “basar1
hikayesi” isteklerinde modelin hangi demografik figiirleri daha sik iiretmesi, bu nispi
olasiliklarin pratige yansimasidir.

Hallsinasyon (hallucination) dedigimiz olgu, istatistiksel agidan soyle okunabilir: Model,
gergek diinya bilgi dagilimi Py (x)yerine yalnizca kendi o6grendigi dil dagilimi
Pg(x)lizerinden ornekleme yapar. Dil dagilimi, gercegin bir goélgesidir; bilgi kaynaklari
smirliysa veya egitim verisi eksikse, Pgile P qccarasindaki fark biiylir. Model, aslinda hig
gozlenmemis ama dilsel olarak makul goriinen 6rnekleri yiiksek olasilikla segebilir. Bu durum,
ozellikle kaynak gdsterme ya da teknik ayrinti sunma gibi gorevlerde kendini belli eder. Model,
“bilinmeyen™i acik¢a ifade etmek yerine, 6grenilmis kaliplardan tiiretilmis bir “uydurulmus
ama tutarli” metin iiretir.

Belirsizligin giivenilir sekilde yonetilmesi igin iki tiir strateji 6ne cikar. ilki, modelin cevap
iretirken kendi eminlik diizeyini sinyallemesi, yani i¢sel olasilik dagiliminin belirsizligini
disar1 vurmasidir. Bu, sicaklik (temperature) ve ornekleme stratejileriyle birlikte, belirli
gorevlerde daha temkinli davranmasini saglayabilir. Ikinci strateji, modelin yanitlarinin dis
bilgi kaynaklariyla capraz dogrulanmasidir. Ozellikle hukuk, saglik ve bilimsel alanlarda, LLM
yanitlarinin veri tabanlari, kilavuzlar veya makalelerle otomatik karsilagtirilmasi, hatali
orneklerin riskini azaltir. Bu ikinci strateji, dogru tasarlanirsa, modelin Py sini daha sik Pgerei’€
projekte eden bir diizeltme mekanizmasi gibi ¢alisir.

Guvenilirlik meselesi, istatistiksel hatalarin 6tesinde bir toplumsal boyut tagir. Bir modelin
istatistiksel olarak iyi performans gdstermesi, tiim gruplar i¢in adil sonuglar iirettigi anlamina
gelmez. Bu noktada “riskin dagilimi” kavrami 6nem kazanir. Ayni toplam hata oranina sahip
iki modelden biri, hatalarin1 rastgele dagitiyorsa, digeri belirli bir grupta yogunlastiriyorsa,
ikincisi etik agidan ¢cok daha sorunludur. Istatistiksel formalizmde benzer toplam riskler esdeger
goriilebilir; fakat toplumda dogruluk kadar adalet de bir performans kriteridir.

Sonugcta istatistiksel risk, yanlilik, belirsizlik ve giivenilirlik birbirine sikica baglidir. LLM’lerin
altindaki istatistiksel teknikler ne kadar zarif olursa olsun, verinin dogasindaki bozukluklar,
modelin tasariminda yapilan se¢imler ve kullanim baglamindaki gii¢ iliskileri, ¢iktinin etik
niteligini belirler. Bu nedenle LLM’ler i¢in gelistirilen her yeni istatistiksel yontem, ayni
zamanda yeni bir sorumluluk alanini1 da beraberinde getirir.



Euasian Econometrics, Statistics & Empenical Economics Yournal 2025, Yolume:26 - 121

10 — Genel Tartisma: Istatistiksel Tekniklerin Biitiinlesmesi ve LLM Paradigmasi

Bu noktaya kadar parcalar halinde inceledigimiz her sey, aslinda tek bir biitiiniin farkl yiizleri.
Olasilik teorisi, bilgi teorisi, istatistiksel 6grenme kurami, Bayesian ¢ikarim, EM algoritmasi,
Markov zincirleri, PCA ve SVD gibi boyut indirgeme yontemleri, olasiliksal grafik modeller,
optimizasyon teknikleri, Transformer mimarisi ve uygulama alanlarinda ortaya ¢ikan risk ve
yanlilik dinamikleri; bunlarin higbiri LLM’lerden bagimsiz, ayr1 diinyalar degil. Tam tersine,
blyilik dil modelleri bu tekniklerin hepsini igeren bir tiir “istatistiksel orkestrasyon” olarak
gorilebilir. Bir anlamda, modern LLM paradigmasi, istatistiksel diisiincenin son kirk yilda
gecirdigi evrimin somutlagsmis bir sentezidir (Bishop, 2006; Murphy, 2023).

Dil modellemenin en temel duzeyinde, hala P(w; | w.;)seklindeki kosullu olasilik diisiincesi
yatiyor. Bu diisiince, hem klasik n-gram modellerini hem de ginimizin dev transformer
mimarilerini birlestiren basit ama giiglii bir iplik gibi. Bilgi teorisinin entropi ve gapraz entropi
kavramlari, kayip fonksiyonunun matematiksel govdesini olusturuyor (Cover & Thomas,
2006). Istatistiksel 6grenme kurami, empirik risk minimizasyonu ve diizenlilestirme sayesinde,
bu kaybi minimize ederken modelin genelleme yapabilir olmasini sagliyor. Bias—variance
tartismasi, LLM’lerin neden asir1 parametreli olmalarina ragmen ise yaradigini anlamamizda
hala temel bir kavramsal gerceve sunuyor (Hastie et al., 2009).

Bayesian bakis acisi, posterior mantigiyla belirsizligin nasil giincellenecegini anlatirken,
Markov zincirleri ve MCMC yontemleri yiiksek boyutlu dagilimlarla bag etmenin algoritmik
yollarin1 gosteriyor (Gelman et al., 2013). Her ne kadar modern LLM’ler kelimenin klasik
anlamiyla “tamamen Bayesci” olmasa da, Ornekleme stratejilerinin ve temperature temelli
olasilik manipiilasyonlarinin arkasinda bu fikirlerin golgesi net sekilde goriilebilir. Bir dil
modeli, aslinda her adimda posterior benzeri bir inang giincellemesi gergeklestiriyor; yalnizca
bunu agik formiillerle degil, sinir ag1 parametrelerinin ickin temsil giiciiyle yapiyor.

EM algoritmasi, gizli degiskenli modellerde parametre tahmini i¢in gelistirilmis bir yontem
olarak tarih sahnesine ¢ikti (Dempster et al., 1977; Rabiner, 1989). HMM’ler, IBM c¢eviri
modelleri ve ¢esitli karisim modelleri tizerinden dilin istatistiksel yapisini1 6grenmenin yollarini
acti. Bugilin transformer tabanli LLM’lerde acik bir EM dongiisii gérmiiyoruz; ama her
katmanda i¢ temsilin giincellenmesi ve bu temsil iizerinden parametrelerin geri yayilimla
dizeltilmesi, kavramsal olarak “tahmin et ve gilincelle” déngiisiiniin modern bir yorumu gibi.
Ozellikle mixture-of-experts (karmasa uzmani) yapilarmn yiikselisi, gizli degiskenli karisim
modellerini dogrudan tekrar giindeme tastyor (Shazeer et al., 2017).

Boyut indirgeme teknikleri, 6zellikle PCA ve SVD, dilin yuksek boyutlu temsilini daha
kavranabilir bir geometrik yapiya oturtmanin temel araglar1 oldu (Jolliffe, 2002). Word2Vec ve
GloVe gibi erken embedding yontemlerinin, log-olasilik matrisleri iizerinden dolayli SVD
benzeri faktorizasyonlar gergeklestirdigi gosterildi (Mikolov et al., 2013; Pennington et al.,
2014). Transformer tabanli LLM’lerde embedding boyutlar1 biiyiidiik¢e, bu gomiilii geometri
daha da 6nemli hale geldi. Embedding uzayi, dilin istatistiksel “haritasi”dir; PCA bu haritada
baskin anlam eksenlerini, SVD ise global yapiy1 ortaya c¢ikarir. Bu uzaym lineerligi,
analogilerin vektorel olarak ifade edilebilmesini miimkiin kilar; v(king) — v(man) +
v(woman) = v(queen)benzeri iliskiler tesadiif degil, bu geometrik yapinin Grinudir (Mikolov
etal., 2013).
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Olasiliksal grafik modeller, bagimlilik yapilarinin agikca ifade edildigi bir dil sunar (Koller &
Friedman, 2009). Transformer’in self-attention mekanizmast, her bir katmanda dinamik olarak
Ogrenilen, veriyle belirlenen bir graf gibi yorumlanabilir. Attention matrisleri, token’lar
arasindaki kosullu bagimliliklarin agirlikli kenarlarini temsil eder; softmax ile normalize edilen
bu agirliklar, her bir kelimenin baglamdaki diger kelimelere “ne kadar kulak verdigini” gosterir
(Vaswani et al., 2017). Grafik modellerdeki faktorizasyon fikri, burada attention ile yeniden
canlanir; model, dilin tam ortak dagilimini degil, faktorize bir kosullu yapi tizerinden 6grenir.
Optimizasyon cephesinde SGD, Adam, momentum ve benzeri yontemler, LLM’lerin devasa
parametre uzayinda bir tiir “istatistiksel devinim”dir (Kingma & Ba, 2015). Loss yiizeylerinin
yiiksek boyutlardaki nispeten “diiz” yapisi, iyi genelleme yapan genis aglarin varligini
aciklamaya yardimci olur (Keskar et al., 2017). Bu agidan bakildiginda, egitim siireci yalnizca
bir miithendislik detayr degil; ayn1 zamanda modelin hangi tiir minimumlara yerlesecegini
belirleyen temel bir istatistiksel surectir. Dz minimumlar genellikle daha az hassas, daha
kararli ve yeni 6rneklere kars1 daha bagislayici ¢oziimlere karsilik gelir.

Transformer mimarisi, tim bu tekniklerin birlestigi bir tiir istatistiksel isleme hattidir. Positional
encoding, dilin sirasini siirekli bir uzaya kodlar; self-attention, kosullu benzerlikleri i¢ ¢arpimlar
tizerinden agirliklandirir; multi-head attention (¢ok basli dikkat), ayn1 veriye farkl istatistiksel
perspektifler uygular; feed-forward (ileri beslemeli) aglar, yerel dogrusal olmayan regresyonlar
olarak temsilleri zenginlestirir; residual (kalint1) baglantilar ve layer normalization, istatistiksel
kararhilig1 artirir (Vaswani et al., 2017; Ba et al., 2016). Bu bilesenler birlikte calistiginda,
model yalnizca “metin ezberleyen” bir yapi olmaktan c¢ikar; dilin altinda yatan olasilik
dagilimlarina erisen bir hesaplama mekanizmasina doniisiir.

Uygulama alanlarina dondiigiimiizde, saglik, finans, hukuk ve bilimsel arastirma gibi
disiplinlerde LLM lerin davranisini anlamak i¢in yine istatistige siginiyoruz. Klinik kararlarda
duyarlilik ve 6zgiilliik, finansal riskte kovaryans ve volatilite, hukukta igtihat aginin graf yapasi,
bilimsel metinlerde hipotez testleri ve gliven araliklari; tim bunlar LLM davranisinin alan-6zel
degerlendirme araglart haline gelmektedir. Model, bir bakima bu alanlarin istatistiksel
reflekslerini dil tizerinden 6greniyor. Bu 6grenme dogru oldugunda model ikna edici ve faydali;
yanlis oldugunda ise son derece tehlikeli bir hal almaktadir.

Risk, yanhilik ve belirsizlik tartigmasi ise tiim bu teknik giizelligin karanlik tarafim1 agiga
cikarmaktadir. Egitim verisindeki ornekleme yanliliklari, tarihten miras duran esitsizlikler,
kalibrasyonu bozulmus olasilik tahminleri ve dagilim kaymalari, LLM ¢iktilarinda sistematik
hatalara neden olabilmektedir. (Barocas et al., 2019; Mitchell et al., 2019). Hallucination
olgusu, modelin kendi 6grendigi dil dagilimini gergek diinyanin iizerine asirt giivenle projekte
etmesi olarak okunabilir; epistemik belirsizligin acik¢a ifade edilmemesi, hatanin riskli bir
ozgiivenle paketlenmesine yol acimaktadir.

Tiim bu tabloya yukaridan baktigimizda, LLM’lerin aslinda birer “istatistiksel koalisyon”
oldugu ortaya ¢ikmaktadir. Farkli istatistiksel teknikler, teorik ve pratik katmanlarda Ust ste
binmektedir; her katman kendi roliinii oynamakta, nihai davranis bu katmanlarin etkilesiminden
dogmaktadir. LLM’ler ne sihir ne de yalmizca miihendislik basarisi; onlar onlarca yillik
istatistiksel diisiincenin, bilgisayar giiciiyle carpilmis bir devamudir.
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Sonug: Istatistiksel Temelden Dilsel Yaraticihga

Biiytik dil modellerinin altinda yatan istatistiksel tekniklere baktigimizda, modern yapay
zekanin aslinda ne kadar klasik sorularla ugrastigini fark etmakteyiz. “Bir olasilik dagilimini
veri tizerinden nasil tahmin ederim?”, “Gordiigiim orneklerden gérmediklerime dogru nasil
genellerim?”, “Belirsizligi nasil ifade eder, nasil yonetirim?”, “Gizli yapilarin varligini nasil
kesfederim?” gibi sorular, istatistik biliminin en eski sorularidir. LLM’ler yalnizca bu sorulara
verilen yanitlarin Ol¢iisiinii biiytitmektedir; veri miktarini, parametre sayisini, hesaplama
giiclinii ve dolayisiyla modelin ifade kapasitesini olaganiistii seviyelere tagimaktadir.

Bu c¢alismada olasilik ve bilgi teorisinden baglayarak, istatistiksel 6grenme kurami, Bayesian
yaklasim, EM, Markov zincirleri, boyut indirgeme, olasiliksal grafik modeller, optimizasyon,
Transformer mimarisi ve uygulama alanlarinin tamami boyunca LLM’lerin istatistiksel
iskeletini ortaya sermeye ¢alistik. Cikan resim, LLM’lerin yalnizca “derin sinir aglar1” degil,
ayni zamanda ¢ok katmanli istatistiksel sistemler oldugu yoniinde oldu. Her bir teknik, modelin
bir pargasini tasimaktadir; olasilik dagilimlari, latent temsiller, ¢ekirdek fonksiyonlari,
faktorizasyonlar ve gradyan akislar1 hep birlikte ¢caligmaktadir.

Diger yandan, bu istatistiksel gii¢ tek basina bir giiven garantisi degildir. Yanlilik, belirsizlik,
kalibrasyon bozukluklar1 ve dagilim kaymalari, modelleri hem daha kirilgan hem de toplumsal
duizeyde daha riskli hale getirebilmektedir. Ozellikle saglik, hukuk ve finans gibi yiiksek etkili
alanlarda, LLM tabanli sistemlerin istatistiksel Ozelliklerini anlamak, etik ve hukuki
sorumluluklarin bir pargasi haline gelmektedir. Model performansini degerlendirirken yalnizca
dogruluk oranina degil, hatanin kimin iizerinde yogunlastigina, hangi gruplarin daha biiyiik risk
altinda olduguna, belirsizligin ne kadar seffaf ifade edildigine bakmak zorundayiz.

Gelecege doniik olarak, LLM arastirmalarinin 6énemli bir kismi1 muhtemelen daha agik Bayesian
mekanizmalar, daha iyi belirsizlik tahmini, daha saglam domain adaptasyonu, daha seffaf
grafiksel temsil ve daha iyi kalibrasyon teknikleri etrafinda sekillenecek. Variational inference,
MCMC tiirevleri, derin olasiliksal programlama gibi alanlar ile biiyiik dil modelleri arasindaki
kopriiler giiglendikge, istatistiksel temelin de daha goriiniir hale gelecegi sdylenebilir (Blei et
al., 2017; Kingma & Welling, 2014; Murphy, 2023).

Yani LLM’ler, insan dilinin olasiliksal bir aynasidir. Bu aynada gordiigiimiiz yalnizca gramer
ve kelime dizilisi degil; ayn1 zamanda diinya hakkinda tasidigimiz istatistiksel sezgiler, 6n
yargilar, bilgi birikimi ve bosluklardir. Bu yiizden LLM’leri anlamak, biraz da kendimizi, dille
kurdugumuz iliskiyi ve belirsizligi nasil ydnettigimizi anlamaktir. Istatistiksel teknikler bu
anlamanin dili; LLM’ler ise bu dilin bugiinkii en ¢arpict uygulamalaridir.
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