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ABSTRACT   

Large Language Models (LLMs) are the cornerstone of modern AI systems capable of humanlike reasoning, 

language understanding, and text generation. Their success relies not only on deep learning architectures but also 

on a comprehensive statistical foundation. This article provides an extensive examination of statistical techniques 

underlying LLMs, including probability theory, statistical learning theory, Bayesian inference, Markov chains, the 

Expectation–Maximization algorithm (EM), dimensionality reduction (PCA, SVD), probabilistic graphical 

models, variational inference, and sampling methods such as MCMC. It further explains how these methods are 

integrated within the Transformer architecture and contemporary LLM training pipelines. Applications in natural 

language processing, healthcare, finance, and law are also explored in detail. 
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İSTATİSTİKSEL YÖNTEMLERİN YENİ BAHARI: BÜYÜK DİL 

MODELLERİ (BDM) 

 

ÖZET 
Büyük dil modelleri (LLM’ler), günümüz yapay zekâ uygulamalarının merkezinde yer alan ve insan benzeri dil 

üretme, anlama, akıl yürütme kabiliyetleriyle dikkat çeken derin öğrenme sistemleridir. Bu modellerin başarısının 

temelinde yalnızca derin sinir ağları değil, aynı zamanda güçlü bir istatistiksel altyapı bulunmaktadır. Bu makale, 

LLM’lerin ardındaki olasılık teorisi, istatistiksel öğrenme kuramı, Bayesci yöntemler, Markov zincirleri, beklenti–

maksimizasyon algoritması (EM), boyut indirgeme (PCA, SVD), olasılıksal grafik modeller, varyasyonel çıkarım 

ve örnekleme yöntemleri (MCMC) gibi tüm temel istatistiksel teknikleri kapsamlı bir biçimde ele almaktadır. 

Ayrıca bu tekniklerin Transformer mimarisi ve modern LLM eğitim süreçlerinde nasıl kullanıldığı ayrıntılı olarak 

gösterilmiştir. Makale, doğal dil işleme, sağlık, finans, hukuk gibi alanlarda LLM tabanlı istatistiksel modellerin 

uygulamalarını da örneklerle incelemektedir. 

Anahtar Kelimeler: Büyük Dil Modelleri, İstatistiksel Öğrenme, Bayesci Çıkarım, Transformer, EM Algoritması, 

PCA, SVD 

JEL Sınıflandırması: C45, C38, C55, C63 

 

 

 

 

 

 

 



  

88 
 

İSTATİSTİKSEL YÖNTEMLERİN YENİ BAHARI: BÜYÜK DİL MODELLERİ (BDM) 

 

1 – Dilin Olasılıksal Temeli ve Bilgi Teorisi (Yeniden Yazım) 

Büyük dil modelleri, dilin içsel belirsizliğini matematiksel bir yapıya oturtarak, kelimeleri ve 

cümleleri olasılıksal bir süreç çerçevesinde temsil eder. İnsan dili, deterministik bir yapıdan 

çok, tarihsel, kültürel ve bağlamsal etkilerin şekillendirdiği geniş bir olasılık uzayında 

yaşamaktadır. Bu nedenle modern dil modelleri, dile ilişkin temel varsayımı şu şekilde kurar: 

Her kelime dizisi, bir olasılık dağılımından çekilmiş rastgele bir örnektir. Dolayısıyla bir dil 

modeli, aslında dilin bu olasılık dağılımını tahmin etmeye çalışan bir fonksiyondur. Eğer bir 

kelime dizisini W=(w1,w2,...,wT) olarak yazarsak, model bu dizinin gerçekleşme olasılığını şu 

şekilde ifade eder: 

𝑃(𝑊) = 𝑃(𝑤1, 𝑤2, … , 𝑤𝑇) 

Olasılık zincir kuralı, dil modellemenin temel yapı taşını oluşturur ve bu diziyi ardışık koşullu 

olasılıkların çarpımı şeklinde yeniden yazmamızı sağlar: 

𝑃(𝑊) =∏ 

𝑇

𝑡=1

𝑃(𝑤𝑡 ∣ 𝑤1:𝑡−1) 

Aslında bu formül, dil modelinin bir "tahmin makinesi" olarak davranmasının matematiksel 

yansımasıdır. İnsan nasıl bir cümlenin devamını sezgisel olarak tahmin ediyorsa, model de 

geçmiş sözcükleri “bağlam” olarak kabul eder ve sıradaki kelimenin olasılığını hesaplar. 

Bu yaklaşım dilin olasılıksal doğasına dayanır. Örneğin “yarın hava…” ifadesinden sonra 

“güzel” kelimesi, “bisiklet” kelimesine kıyasla çok daha yüksek bir koşullu olasılığa sahiptir. 

Çünkü bağlamın sağladığı bilgi, sonraki kelimenin dağılımını daraltarak belirsizliği azaltır. 

LLM’lerin yaptığı tam olarak budur: Dağılımları öğrenir, belirsizliği minimize eder ve bağlama 

uygun sözcükleri yüksek olasılıkla seçer. 

1.1 Olasılık Dağılımlarının Dil Modellemesindeki Rolü 

Bir büyük dil modelinin çıktısı aslında tek bir kelime değildir; kelimelerin bulunduğu sözlük 

üzerinde tanımlanan bir ihtimal dağılımıdır. Model, her bir kelime için bir sayı üretir ve bunları 

“logit” olarak adlandırır. Bu logit değerleri softmax fonksiyonundan geçirilerek normalize 

edilir: 

𝑃(𝑤𝑡 = 𝑖) =
𝑒𝑧𝑖

∑  𝑗 𝑒
𝑧𝑗

 

Bu ifade, modelin bir sonraki kelime için oluşturduğu kategorik dağılımdır. Kategorik dağılım, 

kelime seçiminin ardında yatan rastgele sürecin en yalın matematiksel karşılığıdır çünkü tek bir 

denemede çok kategorili bir sonuç üretir. Dilin üretilişi de bir yönüyle böyle işler; bir sonraki 

sözcük tek bir seçenektir, fakat aday havuzu çok geniştir. 

Bir adım daha yukarıda, çoknomlu dağılım dil modellerinin mini-batch eğitim süreçlerinde 

karşımıza çıkar. Çok sayıda cümle aynı anda işlendiğinde, o bağlamda türeyen kelime 

frekansları aslında çoknomlu dağılımı takip eder. Bu tür istatistiksel ilişkiler, modelin neden 

bazı kelimelere daha fazla yoğunlaştığını anlamamızı sağlar. 

Dil modellemede sık kullanılan bir diğer dağılım Normal (Gauss) dağılımıdır. Özellikle gömülü 

(embedding) uzaylarının matematiksel yapısı çoğu zaman Normal (Gaussiyen) davranışlara 

yaklaşır. Yüksek boyutlu semantik uzayda kelime vektörlerinin kümelenme eğilimleri, anlam 

yakınlıklarının Gauss (Normal) dağılımı üzerinden modellenmesini kolaylaştırır. Bir kelime 

embedding'i (gömülü boyutu) çoğu zaman şöyle ifade edilir: 
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𝑥 ∼ 𝒩(𝜇, Σ) 

Bu ifade, kelimelerin anlamlarının tek bir noktaya indirgenemeyeceğini, aksine bir belirsizlik 

bölgesi olarak temsil edilmesi gerektiğini anlatır. 

1.2 Bilgi Teorisi: Dilin Matematiksel Karmaşıklığı 

Dilin içsel karmaşıklığını ölçmek için bilgi teorisi kullanılır. Claude Shannon’ın geliştirdiği 

entropi kavramı, bir rasgele değişkenin ne kadar belirsizliğe sahip olduğunu matematiksel 

olarak ifade eder. Eğer dildeki kelimelerin olasılık dağılımını P(x) ile gösterirsek, entropi şu 

şekilde hesaplanır: 

𝐻(𝑋) = −∑  

𝑥

𝑃(𝑥)log⁡𝑃(𝑥) 

Her dilin kendine özgü bir entropisi vardır. Örneğin Türkçe'de bazı eklerin sık kullanılması, 

İngilizce’de kelime sırasının daha sınırlı bir şekilde kurulması, Japonca’da cümlenin fiille 

sonlanması gibi kurallar doğal entropiyi değiştirir. Dil modelleri bu entropiyi dolaylı olarak 

öğrenir. 

LLM’lerin eğitiminde kullanılan temel kayıp fonksiyonu çapraz entropidir: 

ℒ = −∑  

𝑇

𝑡=1

log⁡𝑃𝜃(𝑤𝑡 ∣ 𝑤<𝑡) 

Bu ifade, modelin dağılımı ile gerçek dağılım arasındaki uzaklığı ölçer. Eğer model doğru 

tahmin yapıyorsa kayıp azalır, yanlış kelimelere yüksek olasılık veriyorsa kayıp yükselir. 

Eğitim süreci bu kaybı minimize etmeye çalışır ve böylece model giderek daha tutarlı bir dil 

dağılımı öğrenir. 

Performansı göstermek için geleneksel ölçü "perplexity"dir: 

Perplexity = exp⁡(−
1

𝑇
∑  

𝑇

𝑡=1

log⁡𝑃(𝑤𝑡 ∣ 𝑤<𝑡)) 

Perplexity dilin belirsizliğini temsil eden sezgisel bir ölçüdür. Düşük perplexity (şaşkınlık, 

karışıklık, tereddüt) daha iyi tahmin gücü anlamına gelir. İnsan dil yeteneğini ölçseydik 

muhtemelen benzer bir metrik kullanırdık; çünkü insan beyni de bağlam üzerinden olasılık 

tahminleri yapar. 

1.3 Olasılığın Görsel Bir Tasviri 

Bu kavramların tümü, aşağıdaki gibi basit bir şemada görselleştirilebilir: 

 
Bu çizim yalnızca ardışıklığı göstermiyor; aynı zamanda geçmişten geleceğe aktarılan bilginin 

matematiksel temsili olduğunu da hatırlatıyor. İnsan zihni de cümleleri bu şekilde kurar; 

kelimeler birbirlerinin ağırlıklı olasılıklarını belirler ve anlam zaman içinde akarak oluşur. 
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1.4 Softmax’ın Görsel Anlatımı 

Bir modelin logitlerini olasılıklara dönüştürme süreci de şu şekilde düşünülebilir: 

 
Bu örnek, modelin büyük olasılıkla “dördüncü kelimeyi” seçeceğini gösterir. Ancak seçim 

deterministik değildir; dilin büyüsü burada yatar. LLM’ler, anlam üretmek için olasılık 

dağılımını kullanır, rastlantısallıkla yaratıcılık arasında denge kurar. 

1.5 Embedding (Gömülü) Uzayının Estetiği 

Yüksek boyutlu embedding uzaylarında kelimeler adeta bir anlam manzarası oluşturur: 

 

Bu basit çizim, kelimelerin rastgele dağılmadığını, semantik olarak ilişkili kelimelerin birbirine 

yakın kümelendiğini hatırlatır. LLM’ler bu geometrik işaretleri kullanarak anlam çıkarır. 

2 – İstatistiksel Öğrenme Kuramı: ERM, SRM, Taraflılık-Sistematik hata varyansı (Bias–

Variance) ve Düzenlileştirme 

Büyük dil modellerinin eğitimi, ne kadar devasa veri ve parametre kullanırsa kullansın, özünde 

istatistiksel öğrenme kuramının temel ilkelerine sıkı sıkıya bağlıdır. Bu kuramın merkezinde, 

modelin verilerden anlamlı bir fonksiyon öğrenmesini mümkün kılan iki önemli yaklaşım 

bulunur: Empirik Risk Minimizasyonu (ERM) ve Yapısal Risk Minimizasyonu (SRM). 

LLM’lerin eğitim sürecinin, yüzeyde karmaşık sinir ağı optimizasyonu gibi görünmesine 

rağmen, bu kuramsal temellerden nasıl beslendiğini göstermeye çalışacağız. 

Dil modellemede amaç, belirli bir modelin parametrelerini öyle bir biçimde ayarlamaktır ki, 

model önceden görülmemiş metinlerde dahi tutarlı tahminler yapabilsin. Bu hedef genellikle 

“genelleme” olarak adlandırılır ve genelleme başarısı, istatistiksel öğrenmenin omurgasını 

oluşturur. 

2.1 Empirik Risk Minimizasyonu: Öğrenmenin En Saf Formu 

Bir modelin eğitimi sırasında, elimizdeki veri kümesini 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  olarak düşünelim. 

Burada xi bağlamı (örneğin cümlenin önceki kelimeleri), yi ise modelin tahmin etmeye çalıştığı 

kelimedir. Dil modelinin eğitimi, bu veri noktaları üzerinde bir kayıp fonksiyonunun 

ortalamasını minimize etmeyi hedefler: 
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𝑅emp(𝑓) =
1

𝑛
∑  

𝑛

𝑖=1

𝐿(𝑓(𝑥𝑖), 𝑦𝑖) 

Bu ifade, modelin “gözlemlenen” veriye ne kadar iyi uyduğunu ölçer. Burada kayıp fonksiyonu 

L, LLM'lerde genellikle negatif log-olasılıktır: 

𝐿 = −log⁡𝑃𝜃(𝑦𝑖 ∣ 𝑥𝑖) 

Yani model, her doğru kelime için olasılığı mümkün olduğunca yukarı çekmeye çalışır; yanlış 

kelimelere giden olasılığı ise bastırır. Bu yaklaşım, yüzeyde teknik görünse de, sezgisel olarak 

şu anlama gelir: Modeli binlerce, milyonlarca örneğe bakmaya ve bu örneklerdeki örüntüleri 

öğrenmeye zorluyoruz. İnsanların bir dili nasıl öğrendiğini düşündüğümüzde bile, doğru 

ifadeleri tekrar tekrar duymanın uzun vadede doğru olasılık tahminleri yapmamızı sağladığını 

görürüz. 

Ancak ERM’nin bir kusuru vardır: Model yalnızca gördüğü örneklerde iyi performans 

göstermek üzere eğitilir. Eğer model aşırı karmaşıksa ve veri yetersizse, iyi bir genelleme 

yapmadan yalnızca veriyi ezberleme eğilimi gösterebilir. 

2.2 Yapısal Risk Minimizasyonu: Öğrenmeyi Dengede Tutmak 

Vapnik’in öncülüğünü yaptığı Yapısal Risk Minimizasyonu (SRM), öğrenme sürecinin 

yalnızca empirik kaybı minimize etmeye dayanmasının yeterli olmadığını savunur. Asıl amaç, 

yalnızca eğitim verisini iyi açıklamak değil, aynı zamanda genelleme kapasitesini en üst 

düzeyde tutmaktır. 

SRM, bunu modelin karmaşıklığını cezalandırarak yapar. Matematiksel olarak ifade edecek 

olursak, SRM’nin hedeflediği fonksiyon şudur: 

𝑅SRM(𝑓) = 𝑅emp(𝑓) + 𝜆Ω(𝑓) 

Burada Ω(f) modelin karmaşıklığını ölçen bir terimdir. LLM'lerde bu çoğu zaman 

parametrelerin normudur. 

Bu düşünce aslında çok insani bir sezgiye dayanır: Ne kadar karmaşık bir açıklama yaparsak 

hata yapma ihtimalimiz o kadar artar. Basit açıklamalar, çoğu zaman daha sağlam temellere 

dayanır. Büyük dil modelleri de bu mantığı içselleştirir ve dev parametre sayılarına rağmen 

düzenlileştirme teknikleri sayesinde aşırı öğrenme sorununu aşar. 

2.3 Bias–Variance Dengesi: Öğrenmenin Paradoksu 

Makine öğrenmesinin en çarpıcı kavramlarından biri bias–variance dengesidir. Bir modelin 

öğrenme hatası, üç bileşenden oluşur: 

Bias (yanlılık, sistematik hata) , modelin veriyi fazla basitleştirdiği durumlarda ortaya çıkar. 

Varyans ise modelin veriye aşırı uyum sağladığı, yani ezberlediği durumudur. LLM'lerin 

yüksek parametreli yapılarında varyans’ın teorik olarak çok yüksek olması beklenirdi. Ancak 

şaşırtıcı bir şekilde, geniş modeller daha iyi genelleme performansı gösteriyor. Bu durum Çifte 

iniş (double descent) fenomeniyle ilişkilendirilir; model parametreleri kritik bir eşiği aştığında, 

varyans artışı tersine döner ve genelleme beklenmedik şekilde iyileşir. 

Bu fenomenin altındaki matematik hâlâ araştırılmakta olsa da, pratikte geniş LLM’lerin neden 

daha iyi çalıştığını açıklamaya yardımcı olur. 

2.4 Düzenlileştirme: Öğrenmeyi Sağlamlaştırmak 

Düzenlileştirme teknikleri, öğrenme sürecini istikrarlı hâle getirir. En klasik yöntem L2 

düzenlileştirmesidir: 
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𝜆‖𝜃‖2 

Bu terim, model parametrelerinin sonsuz büyüklüğe kaçmasını engeller ve fonksiyonun 

pürüzsüz kalmasını sağlar. Dil modellerinde bu yalnızca matematiksel bir zorunluluk değildir; 

aynı zamanda dilin kendisinin pürüzsüz bir doğası vardır. İnsan dili, aşırı uçlara gitmez; anlam 

akışı düzenlidir. L2 düzenlileştirme, modelin öğrenmesini bu doğal akışa yaklaştırır. 

Dışlanma (dropout) ise tamamen farklı bir sezgiyle çalışır. Her eğitim adımında bazı nöronları 

rastgele “kapatarak” modelin alternatif bağlantılar üzerinden düşünmesini sağlar. Matematiksel 

olarak olmasa da felsefi olarak şu fikre dayanır: Eğer bir beyin sürekli aynı bağlantıları 

kullanırsa, başka yolları öğrenemez. Dışlanma (dropout), bu diğer yolların keşfedilmesini 

sağlar. 

2.5 Optimizasyon: Öğrenmenin Motoru 

Tüm bu teorik çerçeve, nihayetinde bir optimizasyon probleminin içinden geçer. LLM’lerde 

kullanılan optimizasyon çoğunlukla adam tabanlı yöntemlere dayanır. En basit formuyla 

gradyan azaltma (gradient descent) şu şekilde yazılır: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃ℒ 

Fakat pratikte Adam gibi yöntemler, momentum ve adaptif öğrenme oranı gibi iyileştirmeler 

sayesinde daha hızlı ve stabil bir yakınsama sağlar. Dil modellerinin yüz milyarlarca parametre 

içermesi düşünüldüğünde, bu optimizasyon yöntemleri olmadan eğitim neredeyse imkânsız 

olurdu. 

2.6 Öğrenme Sürecinin Görsel Bir Anlatımı 

Bu kavramların birbirini nasıl beslediğini göstermek için aşağıdaki gibi soyut bir çizim 

yardımcı olabilir: 

 

Bu şema, dil modellerinin yalnızca veriyi ezberleyen mekanik sistemler olmadığını, doğru 

dengeler kurulduğunda kavramsal bilgiye yaklaşabildiklerini gösterir. 

Bayesian Çıkarım, Posterior (sonsal olasılık) Mantığı, Markov Zincirleri ve MCMC’nin 

LLM'lerle İlişkisi 

Bayesci düşünme biçimi, belirsizliğin matematiksel olarak nasıl ele alınabileceğine dair en zarif 

yaklaşımlardan biridir ve özellikle büyük dil modellerinin temelindeki birçok fikri sezgisel 

olarak besler. Dilin doğası gereği belirsizlik içermesi, Bayes yöntemlerini dil modellemenin 

teorik çerçevesi ile uyumlu hâle getirir. Bir cümlenin devamında hangi kelimenin geleceğini 

tahmin ederken, aslında insan zihni de Bayesci şekilde çalışır: Önce genel bir beklenti öncül 

(prior) belirler, ardından bağlamdan gelen yeni bilgileri (likelihood~benzerlik) bu beklentiyle 

birleştirerek güncellenmiş bir inanç (posterior) oluşturur. Büyük dil modellerinin yaptığı şey, 

bu süreci devasa veri ve hesaplama gücüyle otomatikleştirmektir. 
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Bayes teoremi matematiksel olarak basit görünse de yorumlandığında oldukça derin bir içeriğe 

sahiptir: 

𝑃(𝜃 ∣ 𝑋) =
𝑃(𝑋 ∣ 𝜃)𝑃(𝜃)

𝑃(𝑋)
 

Bu ifade, bilinmeyen parametrelerin olasılık dağılımının, gözlemlenen veriler ışığında nasıl 

güncellenmesi gerektiğini gösterir. Dil modellemede 𝜃, modelin parametrelerini temsil 

ederken, 𝑋gözlemlenen kelime dizisinin kendisidir. Ancak modern LLM’ler doğrudan 

Bayesian posterior hesaplamaları yapmaz; yine de eğitimin doğası, Bayesci bakış açısının 

izlerini taşır. 

3.1 Prior, Likelihood ve Posterior’un Dile Uyarlanması 

Bir cümlenin başında hiçbir bağlam yokken, dil modelinin olası kelimeler üzerine dağılımı 

aslında bir prior’dır. Türkçe’de bir cümlenin büyük ihtimalle özne ya da belirleyici bir unsurla 

başlaması beklenir. Bu bekleyiş, kültürel ve dilbilgisel bir önbilginin sonucudur. Bağlam 

ilerledikçe, modelin gördüğü yeni kelimeler likelihood’ı belirler ve posterior dağılım —yani bir 

sonraki kelime için güncellenmiş beklenti— giderek daralır. 

Bu durumu soyut bir örnekle düşünelim. “Doktor ameliyathaneye…” ifadesinden sonra “girdi” 

kelimesi, “gömlek” kelimesinden çok daha yüksek bir posterior değere sahiptir. Çünkü 

likelihood, önceki kelimelerle semantik uyumu yüksek kelimeleri güçlendirmiştir. 

Bu sezgiyi matematiksel olarak şöyle ifade edebiliriz: 

𝑃(𝑤𝑡 ∣ 𝑤1:𝑡−1) ∝ 𝑃(𝑤1:𝑡−1 ∣ 𝑤𝑡)𝑃(𝑤𝑡) 

Her ne kadar modern LLM’ler doğrudan Bayes formunu kullanmasa da, bu ifade dil modelinin 

öngörü mantığını sezgisel olarak yansıtır. 

3.2 Markov Zincirleri: Dilin Zamansal Yapısını Yakalamak 

Bayes yöntemleriyle birlikte, Markov zincirleri de dilin modellenmesinde tarihsel olarak kritik 

bir rol oynamıştır. Markov varsayımının temel fikri, geleceğin yalnızca yakın geçmişe bağlı 

olduğudur. Basit bir Markov modeli şu şekilde tanımlanır: 

𝑃(𝑤𝑡 ∣ 𝑤1:𝑡−1) ≈ 𝑃(𝑤𝑡 ∣ 𝑤𝑡−1) 

Bu ifade, dilin zaman içinde ilerleyişini minimal bağlamla anlamaya çalışır. Modern LLM'ler 

ise bağlamı sonsuz bir pencerede tutarak Markov bağımlılığını çok genişletilmiş bir hâle getirir. 

Ancak fikir aynı kalır: Dil, birbirini takip eden durumlar zinciri olarak modellenebilir. 

Markov süreçleri, dilin yapısındaki geçiş olasılıklarını temsil eder. Geçmişte n-gram modelleri, 

bu yaklaşımın basit bir uygulamasıydı. LLM’ler, tüm cümleyi ve hatta tüm belgeyi bağlam 

olarak kabul ederek Markov zincirinin bir genellemesini öğrenir. 

Aşağıdaki çizim, dilin Markov benzeri bir şekilde ilerlediğini tasvir eder: 

                                      durumt ──→ durumt+1 ──→ durumt+2 ──→ ... 

                                          │                    │                      │ 

                                        wt                    wt+1                  wt+2  

3.3 Markov Zinciri Monte Carlo (MCMC): Zor Posteriorların Hesaplanabilir Hâle 

Gelmesi 

Bayesian çıkarımın en büyük zorluklarından biri, posterior dağılımın genellikle analitik olarak 

hesaplanamamasıdır. Çünkü çoğu durumda payda olan: 

𝑃(𝑋) = ∫ 𝑃(𝑋 ∣ 𝜃)𝑃(𝜃)𝑑𝜃 
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hesaplanması imkânsız kadar karmaşık bir integraldir. MCMC yöntemleri, bu integrali kapalı 

formda çözmek yerine posterior dağılımdan örneklemeye dayanır. Böylece karmaşık 

dağılımlar, rastgele örneklerle yaklaşık olarak temsil edilebilir. 

MCMC’nin dil modellemesiyle ilişkisi ilk bakışta açık görünmeyebilir; fakat LLM’lerin 

ürettiği metin örnekleme yöntemleri —özellikle Isı örneklemesi (temperature sampling), 

çekirdek örneklemesi (nucleus sampling) ve en üst k örneklemesi (top-k sampling)  MCMC’nin 

felsefesine oldukça yakındır. Model, olasılık dağılımının tamamını değil, yalnızca en makul 

bölgelerini örnekleyerek bir sonraki kelimeyi üretir. 

MCMC yöntemlerinin temel yapısı şöyledir: 

𝜃𝑡+1 ∼ 𝑞(𝜃𝑡+1 ∣ 𝜃𝑡) 

ve kabul-kuralına dayanan süreçle ilerler: 

𝛼 = min (1,
𝑃(𝜃𝑡+1 ∣ 𝑋)

𝑃(𝜃𝑡 ∣ 𝑋)
) 

Eğer yeni örnek yeterince iyi ise kabul edilir; aksi hâlde eski örnekle devam edilir. Dil modeli 

üretimi de benzer biçimde çalışır: En olası olmayan kelimeler elenir, yüksek olasılıklılar 

arasında kontrollü bir rastgelelik sağlanır. 

3.4 Örnekleme Yöntemleri: Dil Üzerinde Olasılıkların Dansı 

Örnekleme, modern LLM’lerin yaratıcılığının merkezindedir. Deterministik bir argmax seçimi 

metni sıkıcı ve mekanik hâle getirirken, olasılıksal örnekleme (sampling) cümlelere çeşitlilik, 

akışkanlık ve doğallık katar. 

Temperature sampling, olasılık dağılımının keskinliğini ayarlar: 

𝑃(𝑤𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑  𝑗 exp⁡(𝑧𝑗/𝑇)
 

Burada 𝑇 düşürüldükçe dağılım keskinleşir ve model daha muhafazakâr davranır. 

𝑇⁡büyütüldükçe dağılım genişler, model daha yaratıcı hâle gelir. 

Top-k sampling, yalnızca en olası 𝑘 kelimenin seçilmesine izin verir ve şu sezgiyi taşır: İnsan 

da konuşurken pek çok olasılığı zihinsel olarak eleyip yalnızca makul seçenekler arasında karar 

verir. 

Nucleus sampling (p-sampling) ise daha esnek bir yaklaşım sunar: 

∑  

𝑖∈𝑆𝑝

𝑃(𝑤𝑡 = 𝑖) ≥ 𝑝 

Burada 𝑆𝑝, toplam olasılığı 𝑝’yi aşan en küçük kelime kümesidir. Bu yöntem, dil üretiminde 

çeşitliliği olasılıksal bir çekirdek üzerinden kontrol eder. 

Bu sampling yöntemleri MCMC ile aynı zihinsel modele sahiptir: Olasılık uzayında rastgele 

bir yürüyüş yapılır, ancak bu yürüyüş yüksek olasılıklı bölgelerde yoğunlaşır. 

3.5 Dilin Bayesian Yorumunun Görsel Çizimi 

Aşağıdaki çizim, Bayesian çıkarımın dil üzerindeki etkisini sezgisel olarak açıklar: 
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Bağlam arttıkça prior’ın etkisi azalır ve likelihood daha baskın hâle gelir; tıpkı gerçek insan 

konuşmasında olduğu gibi. 

4 – EM Algoritması, Gizli Değişkenler, HMM Geleneği ve LLM’lere Giden Yol 

Modern büyük dil modellerinin parladığı çağdan önce, doğal dil işleme alanında hüküm süren 

kavramlardan biri “gizli değişkenli istatistiksel modeller”di. Bu modeller, gözlemlediğimiz 

verinin arkasında, doğrudan göremediğimiz ama davranışı açıklayan gizli nedenler olduğu 

varsayımına dayanıyordu. Bir cümledeki kelimeler gözlemlenebilir, ama o cümledeki 

sözdizimsel yapılar, anlam sınıfları, konu etiketleri çoğu zaman gizlidir. İstatistiksel modeller 

bu görünmeyen yapıları tahmin etmeye çalışırken, onlara rehberlik eden en önemli 

yöntemlerden biri, beklenti–maksimizasyon algoritması, yani EM algoritması oldu. 

EM, ilk bakışta soyut bir optimizasyon prosedürü gibi görünse de, içeriğinde son derece 

sezgisel bir hikâye barındırır: Elinde hem görülen hem de görülemeyen bileşenlerden oluşan 

bir sistem vardır; doğrudan en iyi parametreleri bulamıyorsun, ama “gizli olanı” tahmin edip 

“görüneni” daha iyi açıklamaya çalışarak, adım adım iyileşebiliyorsun. Dil modellerinin 

tarihsel evriminde, özellikle gizli Markov modelleri (HMM) ve istatistiksel makine çevirisi için 

kullanılan IBM modelleri gibi yapılar, EM’in sahnedeki başrol oyuncularıydı. Bugünkü 

LLM’ler, mimari olarak farklı görünseler de, bu gizli değişkenli düşünme biçiminden doğrudan 

etkilenmiştir. 

4.1 Gizli Değişkenlerin Dünyası 

Gizli değişken kavramını, bir tiyatro sahnesi metaforuyla düşünebiliriz. Seyirci, sahnede 

oynanan oyunu, yani gözlemlenen veriyi görür. Oyuncuların motivasyonları, yönetmenin 

tercihleri, provalarda alınan kararlar ise sahne arkasındadır; görünmezler ama oyunun gidişatını 

belirlerler. İstatistiksel bir modelde ise bu sahne arkası, genellikle 𝑍ile gösterilen gizli 

değişkenlerdir. Gözlemlenen veriyi 𝑋, modelin parametrelerini 𝜃ile gösterirsek, sistemin ortak 

olasılığı şu şekilde yazılır: 

𝑃(𝑋, 𝑍 ∣ 𝜃) 

Oysa bizim gözümüz yalnızca 𝑋′ 'i görür. Dolayısıyla ilgilendiğimiz büyüklük, marjinal olasılık 

olan 

𝑃(𝑋 ∣ 𝜃) =∑  

𝑍

𝑃(𝑋, 𝑍 ∣ 𝜃) 

ifadesidir. Ancak bu toplam, özellikle büyük ve karmaşık gizli yapıların olduğu modellerde, 

pratikte hesaplanamaz hâle gelir. İşte EM algoritması, bu hesaplanamaz marjinal olasılığı 
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doğrudan optimize etmeye çalışmak yerine, “gizli değişkenler üzerinden dolanıp” çözüm 

bulmayı önerir. 

Dil bağlamında düşündüğümüzde 𝑍, bir cümlenin sözdizimsel ağacı olabilir, kelimelere atanan 

konu etiketleri olabilir, çeviride hizalanan kelime eşleşmeleri olabilir. Gözlemlenen kelimeler 

sabittir, fakat onların altında yatan soyut dil yapıları gizlidir. 

4.2 EM Algoritmasının Kalbi: Beklenti ve Maksimizasyon 

EM algoritmasının mantığını anlamak için, önce “tam veri log-olasılığı” dediğimiz bir ifadeye 

bakmak gerekir: 

log⁡𝑃(𝑋, 𝑍 ∣ 𝜃) 

Eğer hem 𝑋⁡hem 𝑍⁡biliniyor olsaydı, parametre tahmini çok daha kolay olacaktı; çünkü tam 

veri üzerinden klasik maksimum olasılık tahmini (MLE) yapabilirdik. Ne var ki gerçek hayatta 

𝑍gözlemlenebilir değildir. EM, bu ikilemi bir tür “hayali tam veri” yaklaşımıyla çözer. Yani 

şunu söyler: Elimdeki parametre tahmini 𝜃(𝑜𝑙𝑑)ile, gizli değişkenlerin dağılımını tahmin 

edebilirim. Bu tahminle, tam veri log-olasılığının beklenen değerini alır, sonra bu beklenen 

değeri en büyükleyen yeni bir parametre seti 𝜃(𝑛𝑒𝑤)bulurum. 

Bu süreç iki adımda işler. İlk adım, beklenti adımıdır (E-adımı). Burada şu fonksiyonu 

tanımlarız: 

𝑄(𝜃, 𝜃(old )) = 𝔼𝑍∣𝑋,𝜃(old )[log⁡𝑃(𝑋, 𝑍 ∣ 𝜃)] 

Bu ifade, mevcut parametreler altında gizli değişkenlerin dağılımını kullanarak, tam veri log-

olasılığının beklentisini hesaplar. İkinci adım, maksimize etme adımıdır (M-adımı): 

𝜃(new ) = arg⁡max
𝜃
 𝑄(𝜃, 𝜃(old )) 

Bu iki adım, dönüşümlü olarak tekrarlanır. İçsel olarak şu hikâye anlatılır: “Mevcut 

parametrelerle gizli yapıyı tahmin et; sonra bu tahmin edilmiş gizli yapı üzerinden 

parametrelerini güncelle; sonra tekrar gizli yapıyı güncelle...” Böylece parametreler, adım adım 

gözlemlenen veriye daha iyi uyan bir çizgiye doğru sürüklenir. 

Bu mekanizmanın arkasında Jensen eşitsizliği yatar. Marjinal log-olasılık 

log⁡𝑃(𝑋 ∣ 𝜃) = log⁡∑  

𝑍

𝑃(𝑋, 𝑍 ∣ 𝜃) 

doğrudan optimize edilemezken, EM bir alt sınır tanımlar ve bu alt sınırı monoton olarak 

yükseltir. Böylece her iterasyonda, modelin veriyi açıklama gücü artar veya en azından 

azalmadığı garanti edilir. 

4.3 Gizli Markov Modelleri: Dil İçin EM’in İlk Tiyatrosu 

EM’in dil dünyasındaki en tanınmış sahnelerinden biri gizli Markov modelleridir (HMM). 

HMM’de, gözlemlenen değişkenler genellikle kelimeler ya da semboller, gizli değişkenler ise 

“durum” dediğimiz, mesela sözcük türleri (isim, fiil, sıfat) veya fonetik birimlerin sınıfları 

olabilir. HMM’nin yapısı, bir zincir şeklinde tasvir edilir: 

                                Z1 ──→ Z2 ──→ Z3 ──→ ... ──→ ZT 

                                 │            │            │                            │ 

                                X1            X2          XT-1                        XT 

Bu diyagramda üstteki Z zinciri, gizli durumların zaman içerisindeki gelişimini; alttaki X’ler 

ise bu gizli durumların ürettiği gözlemleri temsil eder. HMM’nin ortak olasılığı şu biçimdedir: 
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𝑃(𝑋, 𝑍 ∣ 𝜃) = 𝑃(𝑍1)∏  

𝑇

𝑡=2

𝑃(𝑍𝑡 ∣ 𝑍𝑡−1)∏  

𝑇

𝑡=1

𝑃(𝑋𝑡 ∣ 𝑍𝑡) 

Burada parametreler, başlangıç durum olasılıkları, durum geçiş olasılıkları ve gözlem 

olasılıklarıdır. Bu parametreleri, yalnızca gözlemlenen 𝑋üzerinden tahmin etmek istediğimizde, 

EM devreye girer. HMM özelinde kullanılan EM türevi, Baum–Welch algoritması olarak 

bilinir. 

Baum–Welch, E-adımında, ileri–geri (forward–backward) algoritmasını kullanarak her 

zamandaki gizli durum olasılıklarını ve durum geçişlerinin beklenen sayısını hesaplar. M-

adımında ise bu beklenen sayıları kullanarak geçiş ve gözlem olasılıklarını yeniden tahmin eder. 

Bu döngü, modelin dil verisini daha iyi açıklayabildiği bir parametre setinde duruncaya kadar 

sürer. 

4.4 İstatistiksel Makine Çevirisi, IBM Modelleri ve EM 

EM’in dil dünyasındaki bir diğer büyük sahnesi, istatistiksel makine çevirisidir. Nöral makine 

çevirisi ve LLM tabanlı çeviri sistemlerinden önce, cümleler arasındaki çeviri eşleşmelerini 

modellemek için IBM modelleri kullanılıyordu. Bu modellerde, bir kaynak dil cümlesindeki 

kelimelerle hedef dil cümlesindeki kelimeler arasındaki hizalama yapısı gizliydi. Yani hangi 

İngilizce kelimenin hangi Türkçe kelimeye karşılık geldiğini doğrudan bilmiyorduk; bildiğimiz 

tek şey, iki dildeki cümle çiftleriydi. 

İşte burada, hizalama değişkenleri gizli değişkenler olarak tanımlanır ve EM ile öğrenilir. Ortak 

olasılık kabaca şu biçimde yazılabilir: 

𝑃(𝑓, 𝑒, 𝑎 ∣ 𝜃) 

Burada 𝑒 kaynak dil cümlesi, 𝑓 hedef dil cümlesi, 𝑎 ise kelime hizalama yapısıdır. Marjinal 

olasılıkta, gizli hizalamalar toplanır: 

𝑃(𝑓 ∣ 𝑒, 𝜃) =∑  

𝑎

𝑃(𝑓, 𝑎 ∣ 𝑒, 𝜃) 

4.5 EM’den LLM’lere: Kavramsal Köprü 

Şimdi doğal bir soru ortaya çıkar: Transformer (dönüştürücü) tabanlı büyük dil modelleri 

doğrudan EM kullanmıyorsa, EM’in bu uzun hikâyesi LLM’lerle nasıl ilişkilidir? Cevap, 

kavramsal düzeyde, gizli değişken düşüncesi ve beklenti–güncelleme döngüsünde saklıdır. 

Transformer (dönüştürücü)katmanlarını, bir anlamda gizli temsil güncelleme adımları olarak 

görebiliriz. Her katmanda, modelin iç durumları olan gizli temsil vektörleri, girişteki ve önceki 

katmandaki bilgilere bakarak yeniden hesaplanır. Bu, EM’in E-adımı gibi, görünmeyen 

temsilin güncellenmesidir. Daha sonra geri yayılım (backpropagation), parametreleri 

güncelleyerek M-adımına benzer bir rol oynar: “Bu gizli temsil güncellemesi daha iyi olsun” 

diye parametreleri ayarlar. Elbette teknik olarak EM ve gradient descent (gradyan boyut 

azaltma) farklı iki mekanizmadır; ama genel düşünme biçimi, görünen veriyi açıklamak için 

gizli bir iç dünya tahmin etmek ve bu iç dünyayı adım adım iyileştirmektir. 

Buna ek olarak, modern modellerde kullanılan mixture-of-experts (MoE) (uzman karması) gibi 

yapılar, tam anlamıyla gizli değişkenli karışım modellerinin yeniden doğmuş hâlidir. Hangi 

“uzmanın” devreye gireceği, gizli bir seçim değişkeni ile belirlenir. Eğitim sırasında, bu seçim 

dağılımı öğrenilir ve modelin parametreleri bu gizli karışımı daha iyi kullanacak şekilde 
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güncellenir. Bu tablo, EM’in karışım modelleri için yaptığı klasik güncelleme döngüsüyle 

şaşırtıcı derecede benzer bir ruh taşır. 

4.6 Görsel Bir Özet: EM’in Dilden LLM’lere Uzanan İzleri 

Bu kavramları kafada toparlamak için basit bir çizim düşünebiliriz: 

 
Bu şema, ister HMM eğitiyor olalım, ister IBM modeli, ister MoE’li bir Transformer; temel 

sezginin benzer olduğunu gösterir: Gizlenen bir yapıyı tahmin eder ve bu yapıyı daha iyi 

açıklayacak parametreler buluruz. 

5 – Boyut İndirgeme, PCA, SVD, Embedding Uzayları ve LLM’lerin Temel Geometrisi 

Büyük dil modellerinin yüzeydeki işleyişi kelimeleri, cümleleri ve belgeleri işlemek üzerine 

kurulu olsa da, bu görünümün altında derin bir geometrik gerçeklik yatar. LLM’lerin gücü, dilin 

matematiksel bir uzayda temsil edilmesinden doğar. Bu temsil, kelimelerin ve anlamların 

yüksek boyutlu vektörler hâline dönüştürülmesiyle başlar. Bu vektörleri, dilin içsel anlam 

yapısının geometrik gölgeleri gibi düşünebiliriz. Modern modellerde bu uzay genellikle 768, 

1024 veya 4096 boyutlu olabilir. Ancak dilin anlam yapısı bundan çok daha düşük boyutludur. 

Boyut indirgeme yöntemleri, bu girift uzayı daha yönetilebilir bir forma sokar ve LLM’lerin 

semantik yapıları daha verimli işlemesini sağlar. 

Bu nedenle PCA (Principal Component Analysis~Temel Bileşenler Analizi) ve SVD (Singular 

Value Decomposition~Tek Değerli Ayrışma), yalnızca matematiksel araçlar değil, aynı 

zamanda embedding (gömülü) uzayının nasıl oluştuğunu ve LLM’lerin eğitilirken nasıl bir iç 

geometri kazandığını anlamamız için anahtar kavramlardır. Bu bölümde, bu geometrik yapıları 

adım adım açmadan önce, yüksek boyutluluğun dil için neden hem bir yük hem de bir fırsat 

olduğunu görerek başlayalım. 

5.1 Dilin Yüksek Boyutlara Doğru Açılan Kapısı 

Doğal dilin karmaşıklığı, kelimelerin ve cümlelerin çok sayıda farklı bağlamda çok farklı 

anlamlar kazanmasından kaynaklanır. Örneğin “sepet” kelimesi hem finansal bir enstrüman 

setini hem de sazdan yapılan taşıma kabını ifade edebilir. Bu tür çok anlamlılık, tek bir boyutta 

temsil edilemeyecek kadar zengindir. Dolayısıyla embedding’lerin yüksek boyutlu uzaylarda 

bulunması, bu nüansları temsil etmenin bir zorunluluğudur. 

Bununla birlikte, yüksek boyutlu uzayların kendine özgü bir tuhaflığı vardır: Noktalar birbirine 

eşit derecede uzakta olma eğilimindedir. Bu boyutluluk laneti (curse of dimensionality) olarak 

bilinen olgudur. Dil uzayını makul şekilde öğrenebilmek için, bu yüksek boyutlu karmaşıklığı 

belirli bir altta yatan düşük boyutlu yapıya indirgemek gerekir. PCA ve SVD bu ihtiyacın doğal 

sonucu olarak ortaya çıkar. 
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5.2 PCA: Anlamın Ana Eksenlerini Bulmak 

Principal Component Analysis (PCA), verinin en fazla değiştiği yönleri bulmaya çalışan bir 

teknik olarak düşünülebilir. Bu yönler, dilin semantik açıdan en baskın örüntülerini içerir. 

PCA’nın matematiksel tanımı şu şekildedir: 

maximize 𝑤⊤Σ𝑤⁡⁡⁡⁡⁡⁡⁡⁡durumunda    ∥ 𝑤 ∥= 1 

 

Burada Σ, embedding matrisinin kovaryansıdır. Bu ifade, vektörlerin varyansı en yüksek olduğu 

yönü bulmaya çalışır. PCA yalnızca bir boyut indirgeme yöntemi değildir; aynı zamanda 

anlamın baskın yönlerini ortaya çıkaran bir mercek gibidir. Embedding uzayındaki ilk birkaç 

principal component genellikle cinsiyet, çoğulluk, zaman veya semantik alan gibi geniş dil 

ilişkilerine karşılık gelir. 

PCA’nın geometrik yorumu, aşağıdaki gibi basit bir çizimde görülebilir: 

 
Bu eksen, verinin en çok yayıldığı yönü temsil eder. Dil modellerinde bu yayılma, anlam 

çeşitliliğinin en baskın paternlerine karşılık gelir. 

5.3 SVD: Embedding Uzayının Gizli Yapısını Ayrıştırmak 

PCA’nın ardındaki matematiksel işlem aslında tekil değer ayrışımıdır (SVD). Bir metin veri 

kümesini ifade etmek için kullandığımız embedding matrisi 𝑋, SVD ile şu şekilde ayrışır: 

𝑋 = 𝑈Σ𝑉⊤ 

Bu ayrışımda 𝑈doküman vektörlerini, 𝑉kelime vektörlerini, Σise yapının “enerji” dağılımını 

temsil eden tekil değerleri ifade eder. Eğer embedding matrisi devasa bir uzayda gereksiz 

karmaşıklık taşıyorsa, düşük tekil değerlere karşılık gelen bileşenleri atarak daha kompakt bir 

uzay oluşturabiliriz. 

Daha da önemlisi, SVD dil modellemenin tarihsel köklerinde yer alır. Word2Vec’in negatif 

örnekleme (negative sampling) yöntemiyle üretilmiş embedding’lerinin aslında bir SVD’nin 

düşük dereceli bir yaklaşımı olduğu gösterilmiştir (Levy & Goldberg, 2014). Dolayısıyla 

LLM’lerde kullandığımız modern embedding uzayları, bu tarihsel temelin doğal bir devamıdır. 

SVD’nin geometrik yorumunu şöyle düşünebiliriz: 

X (yüksek boyutlu)   

      ↓ SVD 

U —— Σ —— VT 

                            ↓ düşük rütbeli yapı 

Xr (indirgenmiş anlam uzayı) 

 

5.4 Embedding Uzayının Geometrisi: Anlamın Dört Bir Yanı 

Dil modelleri kelimeleri yalnızca semboller olarak değil, anlam kümeleri olarak işler. Bu 

kümeler embedding uzayında çoğu zaman öbeklenmiş hâlde bulunur. Semantik olarak benzer 

kelimelerin birbirine yakın olması, modelin benzer cümle yapılarında bu kelimeleri kolayca 

birbirinin yerine kullanabilmesini sağlar. 



  

100 
 

İSTATİSTİKSEL YÖNTEMLERİN YENİ BAHARI: BÜYÜK DİL MODELLERİ (BDM) 

 

Aşağıdaki soyut çizim bu kümelenmeyi gözümüzde canlandırabilir: 

 
Bu kümeler arasında vektörel ilişkiler vardır. Word2Vec ile popülerleşen şu klasik analoji, 

embedding uzayının vektörel doğasını temsil eder: 

𝑣(kral) − 𝑣(adam) + 𝑣(kadın) ≈ 𝑣(kraliçe) 

 

Bu tür ilişkiler yalnızca bir istatistiksel tesadüf değildir; embedding uzayının doğrusal yapısının 

bir sonucudur. Bu doğrusal yapı SVD’nin sağladığı matris ayrışımının dil uzayına yansımasıdır. 

5.5 Yüksek Boyutlu Uzaylarda Mesafe, Açı ve Benzerlik 

LLM’ler, kelimeler arasındaki benzerliği genellikle kosinüs benzerliğiyle ölçer: 

 
Kosinüs benzerliği, vektörlerin aynı yönde olup olmadığını ölçer. Yüksek boyutlu embedding 

uzayında, mesafeden çok açı önemlidir; çünkü noktaların mutlak mesafeleri yüksek boyutlarda 

anlamını kaybeder. Bu nedenle semantik yakınlık, iki vektörün yönsel benzerliğinde saklıdır. 

Transformer mimarisindeki self-attention (kendi kendine bakım) mekanizmasının kalbi olan 

scaled dot-product attention (Ölçülmüş sonuç üretimi bakımı) tam olarak bu ilişkiyi kullanır: 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾⊤

√𝑑𝑘
)𝑉 

Burada 𝑄⁡ve 𝐾⁡arasındaki iç çarpım, kelimeler arasındaki benzerliği temsil eden bir geometrik 

ölçüdür. Yani Transformer’ın anlam bulma mekanizması, embedding uzayının geometrisi 

üzerine kuruludur. 

5.6 LLM’lerde Boyutun Estetiği 

LLM’ler ilk bakışta devasa boyutlarıyla korkutucudur; yüz milyarlarca parametre, binlerce 

boyutlu embedding alanları, karmaşık transformasyonlar… Fakat işin derininde, bu karmaşa 

daha basit bir yapının tekrarlı ve genişletilmiş bir versiyonudur: Dilin anlam bileşenlerini 

yüksek boyutlu ama yapılandırılmış bir uzaya yerleştirmek. Bu uzayın estetiği, PCA ve SVD 

gibi yöntemlerin ortaya çıkardığı düşük boyutluluğun altında yatan düzenle ilgilidir. Dilin içsel 

düzeni vardır ve boyut indirgeme yöntemleri bu düzeni sezgisel olarak açığa çıkarır. 

Yüksek boyutlar, anlamı taşımak için gereklidir; ama aşırı yüksek boyutlar modelin kavrama 

yeteneğini bozabilir. Bu nedenle LLM’ler, embedding boyutlarını dikkatli seçer; 256 boyut çok 

sığ kalırken, 4096 boyutun ötesi modelin “düzleşmesine” neden olabilir. Bu hassas denge, 

aslında PCA’nın ve SVD’nin bize uzun yıllar önce öğrettiği bir gerçeği yansıtır: Boyut, taşıdığı 

varyans kadar anlamlıdır. 

 



E 

Eurasian Econometrics, Statistics & Empirical Economics Journal               2025, Volume:26 

 

 

101 

 

6 – Olasılıksal Grafik Modeller, Bağımlılık Yapıları ve Transformer’ın İçsel Graf Mantığı 

Büyük dil modelleri hakkında konuşurken genellikle “sinir ağı”, “katman sayısı”, “parametre 

sayısı” gibi kavramlara odaklanırız; ama bu modellerin başka bir yüzü daha vardır: Onlar, 

aslında dev birer olasılıksal grafın, öğrenilmiş ve sürekli güncellenen nüshaları gibidir. 

Olasılıksal grafik modeller, rastgele değişkenler arasındaki bağımlılık ve bağımsızlık 

ilişkilerini çizgiler ve düğümler üzerinden temsil eden yapılar olarak, LLM’lerin ne yaptığını 

sezgisel olarak anlamamız için güçlü bir dil sunar. Dil, kelimeler arasındaki ilişkilerin bir ağ 

içinde dolaştığı karmaşık bir yapıysa; grafik modeller bu ağın matematiksel haritasıdır. 

Burada önce olasılıksal grafik modellerin temel kavramlarını, ardından bu kavramların dil 

modellemesiyle nasıl temas ettiğini, son olarak da Transformer’ın self-attention 

mekanizmasının, aslında dinamik ve veriyle belirlenen bir graf yapısı gibi düşünülebileceğini 

ele alacağız. 

6.1 Grafik Modellerin Temel Fikri: Bağımlılıkların Haritası 

Olasılıksal grafik modellerin çıkış noktası oldukça basittir: Çok sayıda rastgele değişkeniniz 

varsa ve hepsinin birbiriyle doğrudan ilişki içinde olduğunu varsayarsanız, bu değişkenlerin 

ortak dağılımını modellemek neredeyse imkânsız hâle gelir. Ancak çoğu gerçek sistemde, her 

şeyin her şeyle doğrudan ilişkili olması gerekmez; bazı değişkenler, diğerlerinden bağımsız 

olabilir ya da yalnızca sınırlı sayıda komşusuna bağlı olabilir. Grafik modeller, işte bu “yerel 

bağımlılık” fikrini çizgiler ve düğümler üzerinden ifade eder. 

Basit bir gösterimle, her rastgele değişkeni bir düğümle, aralarındaki koşullu bağımlılıkları ise 

kenarlarla gösteririz: 

 
Bu küçük şema bile, hangi değişkenlerin birbirine doğrudan bağlı olduğunu, hangilerinin 

yalnızca dolaylı yollarla etkileştiğini sezdirir. Dil uzayında bu düğümler kelimeler, sözdizimsel 

etiketler, anlam kategorileri ya da gizli temsil vektörleri olabilir. 

Grafik modellerin gücü, ortak dağılımı parçalara ayıran faktörizasyon yapısından gelir. Örneğin 

yönlendirilmiş bir graf modelinde, her düğüm yalnızca ebeveynlerine bağlıdır ve ortak olasılık 

şöyle yazılır: 

𝑃(𝑋1, … , 𝑋𝑛) =∏ 

𝑛

𝑖=1

𝑃(𝑋𝑖 ∣ 𝑃𝑎(𝑋𝑖)) 

Burada 𝑃𝑎(𝑋𝑖), graf üzerindeki ebeveyn düğümlerini ifade eder. Bu faktörizasyon, hem 

hesaplamayı kolaylaştırır hem de modelin temsil gücünü daha anlaşılır kılar. 

6.2 Yönlendirilmiş ve Yönlendirilmemiş Yapılar: Nedensellik ve Simetri 

Grafik modeller iki ana aileye ayrılır: yönlendirilmiş (Bayesian ağlar) ve yönlendirilmemiş 

(Markov rastgele alanları). Yönlendirilmiş grafiklerde oklar, belirli bir koşullu bağımlılık 

yönünü, çoğu zaman nedensel bir yorumu ima eder. Örneğin 

𝐴 → 𝐵 → 𝐶 

gibi bir yapı, 𝐶’nin 𝐵’ye, 𝐵’nin ise 𝐴’ya bağlı olduğunu, ama 𝐶’nin doğrudan 𝐴’dan 

etkilenmediğini (B üzerinden dolaylı etkilendiğini) ima eder. 
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Dil açısından bakarsak, örneğin bir fiilin zaman kipinin, cümlenin genel zaman çerçevesine 

bağlı olması ama bazı koşullarda özne seçiminden doğrudan etkilenmemesi gibi ince bağımlılık 

ilişkilerini bu tür ağlar üzerinden düşünebiliriz. 

Yönlendirilmemiş grafiklerde ise kenarlar, simetrik ilişkileri ifade eder ve ortak dağılım 

genellikle potansiyel fonksiyonlarla yazılır: 

𝑃(𝑋) =
1

𝑍
∏ 

𝐶∈𝒞

𝜓𝐶(𝑋𝐶) 

Burada 𝒞, grafın klik kümelerini, 𝜓𝐶ise o klik üzerinde tanımlı potansiyel fonksiyonları temsil 

eder. Dil modelleme bağlamında bu potansiyeller, belirli kelime gruplarının birlikte ortaya 

çıkma eğilimlerini kodlayan, daha esnek ama daha zor eğitimli yapılar olarak düşünülebilir. 

6.3 Grafik Modeller ve Dil: Bağımlılıkların Cümle İçinde Akışı 

Doğal dil, grafik modeller için neredeyse ideal bir oyun alanıdır. Her cümlede, kelimeler 

arasında karmaşık bir bağımlılık zenginliği bulunur. Bazı kelimeler, diğerlerini neredeyse 

belirler; bazıları ise yalnızca dolaylı anlam etkileri yaratır. Örneğin “eğer” kelimesi, ardından 

gelecek koşullu bir yapıyı çağırır; “çünkü” kelimesi neden-sonuç bağlantısı kurar. 

Geleneksel istatistiksel dil modellemede, bu bağımlılıklar çoğu zaman zincir şeklinde (Markov 

zincirleri, n-gram modelleri) temsil edilmiştir. Ancak daha gelişmiş grafik modeller, bir 

cümledeki bağımlılıkların yalnızca sol–sağ yönünde değil, tüm cümle boyunca çapraz 

referanslarla örüldüğünü yakalamaya çalışmıştır. Örneğin bağımlılık çözümlemesi 

(dependency parsing), her kelimeyi diğerleriyle ilişkilendiren ağaç yapıları üretir: 

 
Bu tür ağaçlar, bir nevi grafik modelin özel bir hâlidir. Transformer mimarisi ortaya çıktığında, 

bu tür yapıları açıkça tanımlamasa da, attention (özen~ilgi~bakım) mekanizması aracılığıyla 

benzer ilişki ağlarını “öğrenir” hâle geldi. 

6.4 Transformer’ın Self-Attention’ı: Dinamik Bir Graf Olarak Okunması 

Transformer’ın kalbinde yer alan self-attention mekanizması, her token’ın, dizideki diğer tüm 

token’larla etkileşime girmesine izin verir. Matematiksel formül basittir ama derin bir anlam 

taşır: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾⊤

√𝑑𝑘
)𝑉 

 

Burada 𝑄, 𝐾ve 𝑉matrisleri, sırasıyla sorgu (query), anahtar (key) ve değer (value) vektörlerini 

temsil eder. 𝑄𝐾⊤çarpımı, her token’ın diğer token’larla ne kadar ilişkili olduğunu ölçen bir 

benzerlik matrisi üretir. Bu matrisin softmax ile normalize edilmesi, her satırı olasılık 

dağılımına dönüştürür. Böylece her kelime, diğer kelimeler üzerine tanımlı bir olasılık dağılımı 

üzerinden ağırlıklı ortalama alır. 
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Bu yapıyı grafiksel bir gözle okursak, her attention başlığı, cümle üzerindeki olası bir 

yönlendirilmiş graf için ağırlıklı kenarları öğrenen bir mekanizma olarak görülebilir. Örneğin 

bir attention başlığı, özne–fiil ilişkilerine; bir diğeri, zamir–referans ilişkilerine; bir başkası ise 

zamansal bağlara odaklanabilir. Bu durumda, self-attention’ın ürettiği matrisi, bir grafın 

komşuluk matrisi gibi düşünebiliriz: 

 
Bu tabloyu, t2 düğümünden diğer düğümlere giden yönlendirilmiş ve ağırlıklı kenarlar olarak 

yorumlayabiliriz. Böyle bakınca Transformer, her ileri geçişte, dizinin üzerinde yeni bir 

olasılıksal graf örüyor ve bu graf üzerinden bilgi yayılımı sağlıyor. 

6.5 Faktörizasyon, Koşullu Bağımsızlık ve Attention’ın Rolü 

Grafik modellerin en önemli avantajlarından biri, koşullu bağımsızlık ilişkilerini net biçimde 

ifade etmesidir. Örneğin bir Bayesian ağında, belirli bir düğüm, ebeveynleri verildiğinde bazı 

diğer düğümlerden bağımsız olabilir. Bu bağımsızlık ilişkileri, hem hesaplamayı hızlandırır 

hem de modelin yorumlanabilirliğini artırır. 

Transformer’da ise, teoride her token (Gösterge~simge) her token’a bağlıdır ve tam anlamıyla 

“yoğun” bir graf yapısı ortaya çıkar. Ancak pratikte, attention ağırlıkları bu yoğun grafın 

içinden seyrek ve anlamlı alt-graplar seçer. Yüksek ağırlık alan kenarlar, güçlü bağımlılıkları; 

düşük ağırlık alanlar ise zayıf, çoğu zaman ihmal edilebilir ilişkileri temsil eder. Böylece model, 

dilin içindeki önemli bağlantıları vurgulayan, önemsizleri ise perdeleyen bir faktörizasyon 

mekanizmasına sahip olur. 

Bu durumu, klasik faktörizasyon formülü ile sezgisel bir şekilde ilişkilendirebiliriz. Dil 

modelinin ortak olasılığını: 

𝑃(𝑤1, … , 𝑤𝑇) =∏ 

𝑇

𝑡=1

𝑃(𝑤𝑡 ∣ 𝑤<𝑡) 

şeklinde yazdığımızda, aslında her bir koşullu dağılımın, attention yoluyla belirlenen bir alt 

bağlama indirgenmiş olduğunu hatırlamak gerekir. Yani model, geçmişin tamamını değil, 

geçmişteki “ilişkili” noktaları daha çok dikkate alır. Attention, bu ilişkililiği belirleyen veri 

güdümlü bir graf çıkarımı olarak görülebilir. 

6.6 Grafiksel Yorumun Dil Anlayışına Katkısı 

Transformer ve LLM’leri grafik modeller açısından okumak, yalnızca teorik bir oyun değildir; 

pratikte de model içi açıklanabilirlik için oldukça önemlidir. Örneğin bir cümledeki belirli bir 

tahminin hangi kelimelerden ne kadar etkilendiğini, attention ağırlıkları üzerinden 

görselleştirebiliriz. Bu görselleştirme, aslında grafın belli bir düğümünden çıkan kenar 

ağırlıklarını izlemekten başka bir şey değildir. 

Basit bir örnek olarak, “Doktor ameliyathaneye girdi çünkü hasta kritikti.” cümlesinde, 

“kritikti” kelimesinin anlamını çözümlerken modelin “hasta” ve “ameliyathaneye” kelimelerine 
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yüksek attention vermesi, semantik ağın bu üç düğüm arasında yoğunlaştığını gösterir. Bu 

durum, grafik model dilinin bize sunduğu “odaklanmış alt-yapı” kavramına çok benzer: Büyük 

ağ içinde küçük, anlam yüklü alt grafikler. 

7 – Optimizasyon, Kayıp Fonksiyonları, Gradient (düğüm~değişme~irtifa~meyil)Akışı ve 

LLM Eğitim Dinamikleri 

Büyük dil modellerinin yüzeyde gördüğümüz etkileyici yeteneği, aslında arkada işleyen dev bir 

optimizasyon sürecinin ürünüdür. Bir LLM, dildeki anlam ve yapıyı “ezberlemez”; bunun 

yerine, devasa miktardaki veriye bakarak, hangi parametre kombinasyonunun bu veriyi en iyi 

açıklayacağını bulmaya çalışır. Bu arayış, yüksek boyutlu bir uzayda kayıp fonksiyonunun en 

alçak noktalarını keşfetme çabasıdır. Bu bölümde, dil modellerinin neden “öğrenebildiğini”, 

gradient descent’in (boyut azaltma) neden işe yaradığını ve optimizasyon yüzeylerinin neden 

düşünüldüğünden daha karmaşık ama bir o kadar da düzenli olduğunu ele alacağız. 

7.1 Kayıp Fonksiyonları: Dilin Matematiksel Ekonomisi 

Bir LLM'in öğrendiği her şey, bir kayıp fonksiyonunun minimize edilmesine dayanır. Eğitim 

sırasında en sık kullanılan kayıp fonksiyonu çapraz entropi (cross-entropy)’dir. Dil modelleme 

bağlamında, modelin tahmin ettiği olasılık dağılımı 𝑝𝜃(𝑤𝑡 ∣ 𝑤<𝑡)ile gerçek kelimenin tekil 

dağılımı arasındaki mesafeyi ölçer. Matematiksel olarak: 

ℒ(𝜃) = −∑  

𝑇

𝑡=1

log⁡𝑝𝜃(𝑤𝑡 ∣ 𝑤<𝑡) 

Bu ifade, modelin doğru kelimeye yeterince yüksek olasılık verip vermediğini ölçer. Eğitim 

boyunca bu kayıp milyonlarca, hatta yüz milyonlarca örnek üzerinden hesaplanır. Kayıp 

fonksiyonunun görevi sadece modelin hata yapıp yapmadığını söylemek değildir; aynı 

zamanda, doğru yönde güncellenmesi için gerekli olan ince gradyan dokunuşlarını da oluşturur. 

Benzetme yapmak gerekirse, kayıp fonksiyonu dilin öğretmeni, gradient ise öğretmenin verdiği 

geri bildirim, parametreler ise öğrencinin bir sonraki derse hazırlanmak için yaptığı 

düzeltmelerdir. 

7.2 Gradyan Azaltma: Derin Öğrenmenin Atar Damarı 

Bir sinir ağının öğrenebilmesi için parametrelerinin değiştirilmesi gerekir. Gradient descent 

(GD), bu değişikliğin yönünü ve miktarını belirler. Eğer kayıp fonksiyonunu bir dağlık arazi 

gibi düşünürsek, gradient descent bu dağın en alçak noktasını bulmaya çalışan bir gezgin 

gibidir. Dağın eğimi, gezginin nereye doğru adım atması gerektiğini söyler. 

Bir parametre güncellemesi şu şekilde ifade edilir: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃ℒ(𝜃𝑡) 

 

Burada 𝜂, öğrenme hızıdır; çok büyük seçilirse model dağın bir yamacından diğer yamacına 

savrulur, çok küçük seçilirse model ilerleyemez. Bu hassas denge, LLM eğitiminde uzun 

yıllardır büyük bir araştırma konusudur. 

Gradient descent’in sezgisel gücünü anlamak için, kayıp yüzeyini iki boyutlu bir çizimle 

gözümüzde canlandırabiliriz: 
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Bu yüzey, LLM parametrelerinin içinde dolaştığı milyarlarca boyutlu bir arazinin sadece küçük 

bir iki boyutlu kesitidir. 

7.3 Stokastik (Tesadüfi) Gradient Descent (SGD): Verinin Gürültüsünü Avantaja 

Çevirmek 

Gerçek dünyada, tüm veri üzerinden kayıp ve gradient hesaplamak çok pahalıdır. Bu nedenle 

SGD, yani mini-batch gradient descent (mini yığın~parti boyut azaltma), eğitim sürecinin fiili 

standardıdır. Her adımda veri kümesinden küçük bir örnek grubu alınır ve gradient yalnızca bu 

örnekler üzerinden hesaplanır. 

Bu yöntem, iki önemli avantaj sağlar: 

1. Gereksiz hesaplamayı azaltır ve eğitimi hızlandırır. 

2. Gradient’e biraz “gürültü” ekler; bu gürültü modelin kayıp yüzeyinde yerel 

minimumlara takılmasını engelleyebilir. 

Bu sezgiyi şöyle bir çizimle düşünebiliriz: 

   deterministic GD   → düz ve kararlı iniş 

   stochastic GD      → zikzaklı ama daha serbest hareket 

LLM’lerin devasa boyutlu kayıp yüzeyleri düşünüldüğünde, SGD’nin bu rastlantısallığı 

modelin etkili öğrenmesini sağlayan unsurlardan biridir. 

7.4 Kayıp Yüzeyleri: Düşündüğümüzden Daha Düz, Ama Yine de Kaygan 

İlk bakışta, milyarlarca parametreli bir modelin kayıp yüzeyi hayal edilemeyecek kadar 

karmaşık olmalıymış gibi gelir. Ancak matematiksel bulgular, yüksek boyutlu uzayların 

şaşırtıcı bir şekilde daha düzenli olduğunu göstermiştir. Özellikle geniş ağlarda, kötü yerel 

minimumların neredeyse hiç olmadığı, kayıp yüzeylerinin nispeten düz olduğu görülmüştür. 

Bu durumu daha somut görmek için, literatürde sıkça verilen bir kesit çizimini düşünebiliriz: 

 
Bu yüzey, keskin bir çukurdan çok, düz bir vadinin içinden geçen geniş bir inişe benzer. 

LLM’lerde “flat-minima” (düz minimumlar) olarak bilinen bu bölgeler, modelin daha iyi 

genelleme yapabildiği yerlerdir. Keskin minimumlar aşırı uyum riskini temsil ederken, düz 

olanlar modelin farklı girişlerde benzer davranmasını sağlar. 
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7.5 Momentum, Adam ve Optimizasyonun Modern Yüzü 

Klasik gradient descent yeterli değildir. Çünkü yüksek boyutlu yüzeylerde, gradient çok dalgalı 

olabilir, bazı yönlerde çok hızlı düşerken bazı yönlerde neredeyse düz olabilir. Bu nedenle 

momentum temelli yöntemler geliştirilmiştir. 

Momentum yaklaşımı, geçmiş gradient’leri akılda tutarak parametre güncellemesini daha 

pürüzsüz hâle getirir: 

𝑣𝑡+1 = 𝛽𝑣𝑡 + (1 − 𝛽)∇𝜃ℒ(𝜃)
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑣𝑡+1

 

Adam algoritması ise momentum ile RMSProp'un birleşmiş hâlidir ve modern LLM eğitiminde 

sıklıkla kullanılır: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚𝑡

√𝑣𝑡 + 𝜖

 

Adam algoritmasının başarısının ardında, gradient’in yönünü ve ölçeğini ayrı ayrı takip etmesi 

yatar. Dil modellemenin karmaşık parametre uzayında, bu adaptif güncellemeler kritik önem 

taşır. 

7.6 Eğitim Dinamikleri: Öğrenme Hızının Zamanla Azaltılması ve Müfredat Öğrenmesi 

(Curriculum Learning) 

Eğitim boyunca öğrenme hızını sabit tutmak, çoğu zaman etkili değildir. Genellikle şu yaklaşım 

izlenir: 

𝜂𝑡 = 𝜂0 ⋅ 𝑓(𝑡) 

Burada 𝑓(𝑡), zamanla azalan bir fonksiyondur. Kosinüs çürümesi (Cosine decay), doğrusal 

çürüme) (linear decay, Kızışma+Çürüme (warmup + decay) gibi stratejiler LLM eğitiminde 

standart hâline gelmiştir. 

Warmup özellikle önemlidir. Eğitimin ilk adımlarında gradient’ler çok dengesiz olabilir. Bu 

nedenle öğrenme hızı yavaşça artırılır: 

 
Müfredat öğrenmesi (Curriculum learning) ise modelin önce basit görevleri, sonra karmaşık 

olanları öğrenmesini sağlar; tıpkı bir öğrencinin önce temel kavramları öğrenip sonra soyut 

matematiğe geçmesi gibidir. 

7.7 Genelleme: LLM’ler Neden “Ezberlemiyor” da Gerçekten Öğreniyor? 

Derin öğrenmenin en ilginç yönlerinden biri, modelin kapasitesi çok büyük olsa bile, doğru 

eğitimle aşırı uyum yapmamasıdır. LLM’ler trilyonlarca kelime görür ve milyarlarca parametre 

içerir; ama bu parametreler veriyi birebir ezberlemek yerine, dilin genelleştirilmiş bir temsilini 

öğrenir. 

Bu durumu açıklamak için teoride üç ana argüman kullanılır: 
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1. Flat minima → iyi genelleme 

2. Model, keskin minimum yerine geniş ve düz bir çözüme yerleşir. 

3. Implicit regularization (örtük düzenleme) 

4. SGD ve Adam gibi algoritmalar, farkında olmadan modelin daha düzgün bir çözüm 

bulmasını sağlar. 

5. Dilin doğal yapısının düşük boyutluluğu 

6. Trilyon kelime bile, dilin içsel manifoldunun yalnızca yüzeyini temsil eder; model bu 

manifoldun şeklini öğrenir. 

Bu sezgiyi şöyle bir manifold çizimiyle düşünebiliriz: 

 
Model, bu manifold (çok çeşitlilik) üzerinde etkili bir projeksiyon öğrenir. 

8 – Transformer Mimarisi: Katmanlar, Attention, Pozisyonal Kodlama (Positional 

Encoding) ve İstatistiksel Yorum 

Büyük dil modellerinin kalbinde, artık neredeyse ikonik hâle gelmiş bir mimari vardır: 

Transformer. “Attention is all you need” başlıklı makaleyle ortaya çıkan bu yapı, dil 

modellemesinde istatistiksel düşünceyle lineer cebir’in buluştuğu bir kesişim noktası gibidir. 

Yüzeyde gördüğümüz şey, üst üste yığılmış katmanlar, self-attention blokları, residual (kalıntı) 

bağlantılar ve normalizasyon katmanlarından oluşan uzun bir zincir. Fakat bu zincirin her 

halkası, istatistiksel bir anlam taşır. 

Transformer’a uzaktan baktığımızda, girişte token dizisini alan ve çıkışta her token için yeni 

bir temsil üreten bir fonksiyon görürüz. Bu fonksiyon aslında, bağlam koşullu bir olasılık 

dağılımını yaklaşık olarak öğrenmeye çalışır. Her katman, bu dağılımı daha rafine bir hâle 

getiren bir istatistiksel operatör gibi düşünülebilir. 

8.1 Girdi Temsili: Token’lardan Sürekli Vektörlere 

Bir cümlenin model tarafından işlenebilmesi için, önce kelimelerin (ya da alt birim token’ların) 

birer vektöre dönüştürülmesi gerekir. Bu süreçte her token, sözlükteki benzersiz kimliğini 

temsil eden bir indeksle başlar. Ardından bu indeks, embedding matrisine bakılarak sürekli bir 

vektörle eşleştirilir. Eğer embedding matrisini 𝐸 ∈ ℝ𝑉×𝑑ile gösterirsek, burada 𝑉⁡sözlük 

büyüklüğü, 𝑑⁡ise embedding boyutudur. Bir token’ın vektörü basitçe: 

𝑥𝑡 = 𝐸𝑤𝑡
 

 

şeklinde yazılabilir. Bu, istatistiksel açıdan, kategorik bir değişkeni sürekli bir uzayda kodlayan 

bir dönüşümdür. Bu vektörlerin tümü bir araya geldiğinde, cümlenin ilk temsilini oluşmuş olur. 

Ancak bu temsilin eksik bir yanı vardır: Sıra bilgisi. Yani model, “kedi köpeği kovaladı” ile 
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“köpek kediyi kovaladı” cümlelerini aynı çoklu-küme gibi görebilir. Bu problemi çözmek için 

positional encoding (pozisyon kodlama) devreye girer. 

8.2 Positional Encoding (pozisyon kodlama): Sıranın Matematiksel İzini Bırakmak 

Transformer mimarisinin en radikal taraflarından biri, RNN ve LSTM’lerden farklı olarak, 

sıralı işlemi bir zorunluluk hâline getirmemesidir. Tüm token’lar aynı anda işlenebilir; fakat 

bunun için modelin pozisyon bilgisini başka bir yoldan edinmesi gerekir. Positional encoding, 

tam da bu noktada devreye girer. Girdinin her bir pozisyonuna, konumu temsil eden bir vektör 

eklenir. 

Vaswani ve arkadaşlarının önerdiği sinüs–kosinüs tabanlı positional encoding formülü şu 

şekildedir: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin⁡(
𝑝𝑜𝑠

100002𝑖/𝑑
)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos⁡(
𝑝𝑜𝑠

100002𝑖/𝑑
)
 

Burada 𝑝𝑜𝑠pozisyonu, 𝑖⁡ise boyut indeksini temsil eder. Bu fonksiyonlar, farklı frekanslarda 

salınımlar üreterek pozisyonun sürekli bir temsilini oluşturur. Bu yaklaşım, dilin sıralı yapısını 

Fourier benzeri bir tabana projekte etmek gibi düşünülebilir; her pozisyon, birden çok frekans 

bileşeninin birleşimiyle kodlanır. İstatistiksel açıdan bakıldığında, bu kodlama, sıranın 

kendisini rastgele bir etiket olarak değil, düzenli ve ölçülebilir bir özellik olarak modellemenin 

yoludur. 

Sonuçta, girişteki her token, içerik bilgisini taşıyan embedding vektörü ile pozisyon bilgisini 

taşıyan positional encoding vektörünün toplamından oluşan bir temsil kazanır: 

ℎ𝑡
(0)

= 𝑥𝑡 + 𝑃𝐸𝑡 

Bu ℎ𝑡
(0)

vektörleri, Transformer’ın derin katmanlarına giren ilk istatistiksel öznelerdir. 

8.3 Self-Attention: Koşullu Dağılımın İç Çarpım Üzerinden Değerlendirilmesi 

Transformer’ın ruhu, self-attention mekanizmasıdır. Bu mekanizmayı soyut bir istatistiksel 

operatör olarak düşünmek oldukça faydalıdır. Her token, diğer token’lara olan ilgisini ölçer; bu 

ilgi, lineer dönüşümler ve iç çarpımlar üzerinden sayısallaştırılır. 

Her token için üç farklı vektör hesaplanır: query (𝑞𝑡), (sorgu) key (𝑘𝑡) (anahtar) ve value (𝑣𝑡) 

(değer) . Bunlar, giriş temsilinin farklı ağırlık matrisleriyle çarpılmasıyla elde edilir: 

𝑞𝑡 = 𝑊𝑄ℎ𝑡, 𝑘𝑡 = 𝑊𝐾ℎ𝑡 , 𝑣𝑡 = 𝑊𝑉ℎ𝑡 

Buradaki 𝑊𝑄 ,𝑊𝐾,𝑊𝑉matrisleri, öğrenilen parametrelerdir. Bütün token’lar için 

hesaplandığında, 𝑄, 𝐾, 𝑉matrisleri oluşur. Attention skorları, query–key (sorgu-anahtar) iç 

çarpımlarıyla hesaplanır: 

𝛼𝑡,𝑗 =
𝑞𝑡 ⋅ 𝑘𝑗

√𝑑𝑘
 

Bu skorlar, bir normalizasyon adımıyla olasılık dağılımına dönüştürülür: 

𝑎𝑡,𝑗 =
exp⁡(𝛼𝑡,𝑗)

∑𝑙 exp⁡(𝛼𝑡,𝑙)
 

Ve nihayet, her token’ın yeni temsili, diğer tüm token’ların value vektörlerinin ağırlıklı 

ortalaması olarak elde edilir: 
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ℎ𝑡
′
=∑

𝑗

𝑎𝑡,𝑗𝑣𝑗  

Bu işlemi istatistiksel bir bakışla okuduğumuzda, self-attention’ın, bir token’ın koşullu 

dağılımını, diğer token’ların “gizli özelliklerine” göre güncelleyen bir kernel operatörü gibi 

davrandığını görürüz. 𝑞𝑡ve 𝑘𝑗arasındaki iç çarpım, bu iki token arasındaki benzerliği ölçer; 

softmax ise bu benzerlikleri birer olasılık ağırlığına dönüştürür. Sonuç, koşullu bir beklenen 

değer hesabıdır: “Bağlamdaki diğer token’ları, bana ne kadar benzediğinize göre tartıyorum ve 

yeni temsilimi bu tartılmış ortalama üzerinden güncelliyorum.” 

8.4 Çok Kafalı Attention: Farklı İstatistiksel Bakış Açıları 

Tek bir attention başlığı, dizideki ilişkileri belirli bir projeksiyon uzayında analiz eder. Ancak 

dil, tek bir bakış açısıyla yakalanamayacak kadar çok katmanlıdır. Çok kafalı (multi-head) 

attention, bu nedenle devreye girer. Farklı başlıklar, 𝑊𝑄 ,𝑊𝐾,𝑊𝑉matrislerinin farklı kopyalarını 

kullanarak, aynı girdiyi farklı lineer alt uzaylara projekte ederler. Her başlık için ayrı ayrı 

attention uygulanır ve sonunda bu başlıkların çıktıları birleştirilir. 

Bunu şu şekilde yazabiliriz: 

head𝑖 = Attention(𝑄𝑊𝑄
(𝑖)
, 𝐾𝑊𝐾

(𝑖)
, 𝑉𝑊𝑉

(𝑖)
) 

MultiHead(𝑄, 𝐾, 𝑉) = [head1; … ; headℎ]𝑊𝑂 

 

Her başlık, dilin farklı bir istatistiksel özelliğine odaklanabilir: biri uzun menzilli bağımlılıkları, 

biri sözdizimsel ilişkileri, biri anlam benzerliklerini, bir diğeri zaman–kip bağlamlarını 

yakalayabilir. Bu yapı, istatistiksel modellemede “karışım modelleri” veya “çoklu çekirdek” 

kullanımıyla benzer bir mantık taşır. Aynı veriye farklı çekirdekler uygulayıp, sonuçları bir üst 

uzayda birleştirmek gibidir. 

8.5 Residual (kalıntı) Bağlantılar ve Layer (katman) Normalizasyon: Öğrenmenin 

Stabilizasyonu 

Transformer’ın her katmanında yalnızca attention yoktur; attention’ın ardından gelen bir feed-

forward ağı, ardından residual bağlantı ve normalizasyon katmanları da bulunur. Bu bileşenler, 

yalnızca mühendislik ayrıntıları değil, aynı zamanda istatistiksel kararlılık araçlarıdır. 

Residual bağlantılar, giriş vektörünü, katmanın çıktısına ekler: 

ℎ̃𝑡 = ℎ𝑡
𝑖𝑛 + SubLayer(ℎ𝑡

𝑖𝑛) 

 

Bu yapı, gradyanların kaybolmasını engeller ve modelin derinliğini artırırken eğitim dengesini 

korur. İstatistiksel açıdan bakarsak, residual bağlantı, her katmanda yapılan dönüşümü bir 

“düzeltme terimi” gibi ele alır; her yeni katman, önceki tahmine küçük ama anlamlı bir 

güncelleme ekler. Sanki model, “mevcut tahminimi tamamen çöpe atmıyorum, yalnızca üzerine 

bir düzeltme yazıyorum” demektedir. 

Layer normalization ise her token’ın temsil vektörünü, boyutları boyunca normalize eder. Bir 

vektör ℎ⁡için: 

LayerNorm(ℎ) =
ℎ − 𝜇

𝜎
⊙ 𝛾 + 𝛽 
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Burada 𝜇⁡ve 𝜎, vektör bileşenlerinin ortalaması ve standart sapması; 𝛾⁡ve 𝛽⁡ise öğrenilebilir 

ölçek ve kaydırma parametreleridir. Bu normalizasyon, dağılımı istatistiksel olarak daha kararlı 

hâle getirir; gradyanların aşırı dalgalanmasını engeller ve eğitim sürecini hızlandırır. Yani 

LayerNorm, parametre uzayının belli bölgelerinde kaybolmamızı önleyen bir düzenleyici gibi 

çalışır. 

8.6 Feed-Forward (İleri Besleme) Katmanlar: Yerel, Ama Güçlü Dönüşümler 

Her attention bloğunun ardından gelen konum-bağımsız feed-forward ağları, her token’ın 

temsilini kendi içinde dönüştürür. Basit bir yapı ile: 

FFN(ℎ) = 𝑊2𝜎(𝑊1ℎ + 𝑏1) + 𝑏2 

 

Bu dönüşüm, istatistiksel öğrenme açısından doğrusal olmayan regresyonun bir formudur. 

Attention, kelimeler arasındaki ilişkileri hesaplarken, feed-forward ağları aynı kelimenin içsel 

özelliklerini zenginleştirir. İkisi bir araya geldiğinde, hem bağlamsal hem yerel bir istatistiksel 

model elde ederiz. 

8.7 Transformer’ı Büyük Resimde Okumak 

Tüm bu bileşenler bir araya geldiğinde, Transformer’ın her katmanını şu şekilde düşünebiliriz: 

Önce attention ile dizideki istatistiksel bağımlılıklar hesaplanır, sonra bu bağımlılıklar feed-

forward ağlarıyla işlenir, residual ve normalizasyon ile stabil hâle getirilir ve bir sonraki 

katmana aktarılır. Katmanlar arttıkça, temsil giderek daha soyut, daha geniş bir bağlamı 

kapsayan, daha karmaşık istatistiksel özetler hâlini alır. 

Bu sürecin graf düzeyinde bir tasviri, zihinde şöyle canlanabilir: 

 
Her katman, dilin istatistiksel yapısının başka bir boyutunu yakalayan bir filtre gibi çalışır. 

9 – LLM Uygulama Alanları: İstatistiksel Temeller, Kavramsal Boyut ve Modelin “Alan 

Anlayışı” 

Büyük dil modelleri, yalnızca metin üreten sistemler değildir; aynı zamanda istatistiksel bilgi 

işleme makineleridir. Bir hukuk metniyle tıbbi bir raporun aynı model tarafından işlenebilmesi, 

dilsel yüzeyin gerisinde, istatistiksel bir yapıların bütünlüğü olduğuna işaret eder. Bu yapıların 

merkezinde, kelimelerin ve kavramların yüksek boyutlu embedding uzayında modellenen 

benzerlik ilişkileri vardır. Fakat uygulama alanları birbirinden keskin şekilde farklılaştıkça, bu 

ilişkilerin formu da değişir. Örneğin sağlık alanında “akut”, “kronik”, “prognosis”, “metastaz” 

gibi terimlerin semantik uzaklıkları tıbbi kavramlar etrafında kümelenir; hukuk metinlerinde 

ise “mülkiyet”, “kast”, “takdir yetkisi”, “yargı denetimi” gibi terimler kendi kategorizasyon 

ağları içinde yerleşir. 

LLM’lerin çok yönlülüğünün ardındaki temel istatistiksel gerçek, “ortak embedding 

manifoldunun bölgesel uzmanlaşmaya izin vermesi”dir. Anlam uzayı sürekli olduğundan, bir 

alanın kavramları başka bir alanın kavramlarından tamamen ayrı değildir; yalnızca manifoldun 

farklı bölgelerinde toplanırlar. Dilin çok alanlı kullanımını mümkün kılan şey de budur. 

Bu noktada dil modelleri, ham sembollerle çalışan sistemler olmaktan çıkar; belirli alanların 

bilgi dağılımlarını öğrenmiş istatistiksel yapılar hâline gelir. Modelin gördüğü metinler, alan 
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uzmanlığının dağılımını içerir. Bu dağılım, kayıp fonksiyonunun içinde saklıdır. Eğitimin her 

adımında model, alanın “bilgi yüzeyini” biraz daha iyi tahmin etmeyi öğrenir. Bunu şu 

istatistiksel ifade üzerinden anlayabiliriz: 

𝜃∗ = arg⁡min⁡
𝜃

  𝔼𝑋∼𝒟[−log⁡𝑝𝜃(𝑋)] 

 

Burada 𝒟, dağılımı “sağlık”, “finans”, “hukuk”, “bilimsel yayınlar” vb. alanlara yayılan bir veri 

kümesidir. Model, tüm bu alanların ortak dağılımını yaklaşık öğrenir. Bu nedenle model, tek 

bir alanın uzmanı değildir; çoklu alanların ortak manifoldunu yakalamaya çalışan meta-öğrenici 

bir sistemdir. 

Bu yetenek, özellikle karmaşık bağlam bağımlılıklarında kendisini gösterir. Örneğin finans 

alanında bir metinde geçen “kaldıraç” kelimesi, sağlık alanında geçen “kaldırma kuvveti” 

kavramından tamamen farklı bir semantik alana işaret eder. Transformer’ın çok kafalı attention 

mekanizması, bu çoklu bağlamları ayrıştırır; kafalardan biri finansal bağlamı öğrenirken, bir 

başkası fiziksel bağlamı öğrenebilir. Böylece model, bağlamı tanımayı bir istatistiksel 

sınıflandırma probleme dönüştürmeden, dağılım içi varyasyon olarak işler. 

Embedding Uzayında Alan Ayrışması 

LLM’lerin eğitiminde ortaya çıkan ilginç fenomenlerden biri, embedding uzayında alanların 

doğal olarak ayrışmasıdır. Sağlık terimleri bir araya kümelenir, finansal terimler başka bir 

bölgede yoğunlaşır, hukuki kavramlar ise farklı bir alt uzayda konumlanır. Bu ayrışma, PCA 

veya t-SNE gibi yöntemlerle görselleştirildiğinde daha belirgin hâle gelir. 

Basit bir çizimle: 

 
Bu kümeler birbirine uzak görünse de, manifoldun tamamı bağlantılı bir yüzey oluşturur. Bu 

durum, modelin bir alandan diğerine transfer edebilme kapasitesini açıklar. Bir hukuk metninde 

geçen tıbbi bir terim, modelin tıbbi manifold bölgesini aktive eder; ama cümlenin geri kalanı 

hukuk manifoldunda kalmaya devam eder. 

Bu esneklik, LLM’lerin çok alanlı uygulamalarını mümkün kılar. 

Alan Uzmanlığının İstatistiksel Doğası 

Birkaç yıl öncesine kadar “alan modeli” fikri, bir yapay zekânın belirli bir disipline özel olarak 

eğitilmesi anlamına geliyordu. Bugün ise alan uzmanlığı, embedding manifoldunun belirli 

bölgelerinin daha keskin, daha yüksek çözünürlüklü hâle gelmesiyle oluşuyor. Bu durum, şu 

istatistiksel metaforla açıklanabilir: 

• Genel bir LLM = geniş ama düşük çözünürlüklü bir anlam manifoldudur. 

• Bir alana ince-tuning (fine-tuning) = manifoldun belli bir bölgesinin daha yüksek 

çözünürlükle işlenmesidir. 

• Uzman model = manifoldun yalnızca bir bölgesini temsil eden dar ama ultra-yoğun bir 

modeldir. 
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Bu farkı matematiksel bir benzetmeyle göstermek istersek, genel LLM’in tahmin ettiği dağılım: 

𝑝𝜃(𝑤 ∣ 𝑐) 

 

iken, alan ince ayarından sonra tahmin edilen dağılım: 

𝑝𝜃′(𝑤 ∣ 𝑐, 𝐴) 

şeklindedir. Burada 𝐴, alan bilgisini temsil eder. Bu, koşullu bir dağılımın alt dağılıma 

dönüşmesi gibidir. 

Bağlam-Uygulama Ayrışmasının Önemi 

Bir LLM'in uygulama başarısı, yalnızca verinin içeriğine değil, bağlamın istatistiksel işlenişine 

bağlıdır. Aynı kavram, farklı bağlamlarda farklı koşullu dağılımlar üretir. Örneğin “Tedavi 

başarılı oldu.” cümlesi sağlık alanında yüksek olumlu bir sonuç bildirirken, finans alanında 

“Tedbir başarılı oldu.” ifadesi yatırım stratejisinin etkili olduğunu anlatır. 

Bu iki bağlamın ayırt edilebilmesi, attention’ın bağlam seçici yapısından gelir. Self-attention’ın 

matematiksel formülünde: 

𝑎𝑡,𝑗 = softmax(
𝑞𝑡𝑘𝑗

⊤

√𝑑𝑘
) 

 

bağlam 𝑞𝑡’nin değerleri, alan bilgisini otomatik olarak açığa çıkarır. Böylece model, alan odaklı 

bir filtreleme işlemini istatistiksel olarak eğitilmiş parametrelerle gerçekleştirir. 

Modelin Alanlar Arası Genelleme Yeteneği Neden Bu Kadar Güçlü? 

İki temel sebep var: 

1. Dil alanlar arası paylaşılan kavramsal yapılar içerir. 

Mantık, nedensellik, tanımsal ilişkiler, kavramların hiyerarşisi alanlar arasında ortak 

geometri oluşturur. 

2. Model çok büyük ve çok çeşitli veriyle eğitilmiştir. 

Bu veri, dilin tüm yüzeysel varyasyonlarının ortak dağılımını öğrenmesine imkân tanır. 

Böylece model, bir alandaki ifadeleri başka bir alandaki kavramların bağlamıyla bile 

ilişkilendirebilir. Buna benzer bir fenomen, istatistiksel fizikteki “genelleşmiş simetriler” 

kavramına benzetilebilir; farklı yüzeylerdeki davranışlar aynı temel kurallarla yönetilir. 

Sağlık, Finans, Hukuk ve Bilimsel Metinlerde LLM Davranışı: Alan İstatistiği ve Örnek 

Vaka Analizleri 

Büyük dil modelleri, farklı alanlara yayılan metinleri işlerken aslında aynı çekirdek istatistiksel 

mekanizmaları kullanır, fakat bu mekanizmaların yüzeye yansıması alanın doğasına göre 

değişir. Sağlık alanında kullanılan dil, yüksek riskli kararlarla iç içedir; finans metinlerinde 

belirsizlik ve gelecek tahmini ön plandadır; hukukta normatif yapı, yorum ve içtihat ağı 

hakimdir; bilimsel metinlerde ise kanıtın gücü, deneysel tasarım ve istatistiksel testler dilin 

içine gömülmüştür. LLM bu alanların her birinde aynı matematiksel kalple çalışır, ancak 

öğrendiği dağılımlar farklılaşır.  

Sağlık alanından başlayalım. Klinik metinler, tanılar, laboratuvar sonuçları, tedavi planları ve 

prognoz değerlendirmeleri gibi bileşenlerden oluşur. Bir LLM, bu tür metinlerle eğitildiğinde, 

aslında örtük olarak bir tür koşullu olasılık modeli öğrenir. Örneğin bir hastanın semptom 
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vektörünü 𝑥, olası tanıyı 𝑦ile gösterirsek, model dolaylı biçimde 𝑝𝜃(𝑦 ∣ 𝑥)dağılımına yaklaşır. 

Burada klasik istatistikten alışkın olduğumuz duyarlılık (sensitivity) ve özgüllük (specificity) 

gibi kavramlar devreye girer. Bir tanı modelinin duyarlılığı 

Sensitivite =
TP

TP + FN
 

 

ve özgüllüğü 

Spesifisite =
TN

TN + FP
 

 

şeklinde tanımlanır. LLM doğrudan bu oranları hesaplamasa bile, ürettiği önerilerin doğruluğu 

aynı yapıdaki sayımlar üzerinden değerlendirilebilir. Bir klinik LLM, örneğin şüpheli bir 

akciğer grafisi için “yüksek olasılıkla pnömoni” dediğinde, aslında posterior bir olasılık tahmini 

yapar. Bu tahminin kalitesi, geleneksel istatistikteki ROC eğrileri ve AUC değerleri ile 

ölçülebilir. ROC eğrisinde, modelin eşik değerini değiştirirken, doğru pozitif oranıyla yanlış 

pozitif oranının izlediği eğri, LLM’nin tanı kararlarının ne kadar ayrışabilir olduğunu gösterir. 

Bu tür değerlendirmeler, sağlık alanında LLM kullanımının yalnızca “dil” değil, aynı zamanda 

saf istatistiksel performans meselesi olduğunu gösterir. 

Finans alanında ise dil, sayılarla birlikte akmaktadır. Risk raporları, bilanço analizleri, piyasa 

yorumları, araştırma notları gibi metinler, hem deterministik hesaplar hem de olasılıksal 

senaryolar içerir. LLM’ler bu metinleri işlerken genellikle iki düzeyde çalışır: yüzeyde doğal 

dil üretir, derinde ise risk ve beklenti kavramlarını içeren bir istatistiksel dünya kurar. Bir 

finansal enstrümanın beklenen getirisi 

𝔼[𝑅] =∑

𝑖

𝑝𝑖𝑟𝑖 

 

şeklinde yazılırken, varyans ve kovaryans yapıları portföy riskini belirler. Örneğin iki varlık 

için kovaryans 

Cov(𝑅1, 𝑅2) = 𝔼[(𝑅1 − 𝜇1)(𝑅2 − 𝜇2)] 

 

ifadesiyle verilir. LLM bu formülleri bilmek zorunda değildir; ancak finans literatürünün içinde 

büyümüşse, metinlerden öğrenmiş olduğu ilişkiler bu kavramlarla uyumlu bir dağılım davranışı 

üretir. Bir raporda geçen “volatilite artışı”, “aşağı yönlü risk”, “korelasyon çöküşü” gibi 

ifadelerin embedding uzayında oluşturduğu kümelenmeler, aslında risk kavramının semantik 

manifold içindeki geometrisini temsil eder. Böylece model, yalnızca “cümle kurmaktan” çok, 

finans dünyasının istatistiksel sezgilerini yeniden ifade etmeye başlar. 

Hukuk alanı, LLM’ler için biraz farklı bir meydan okumadır. Çünkü burada yalnızca olgular 

yoktur; aynı zamanda normatif değerlendirmeler, kural yorumları, içtihat zincirleri ve çoğu 

zaman belirsizliğin dil üzerinden yönetildiği uzun metinler vardır. Bir mahkeme kararını 

düşündüğümüzde, olgular kümesini 𝐹, hukuk normlarını 𝑁, yorum kurallarını ise 𝐼ile gösterip, 

kararın sonucunu 𝐶olarak düşünebiliriz. Teorik olarak 

𝐶 ∼ 𝑓(𝐹, 𝑁, 𝐼) 
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şeklinde soyut bir fonksiyon yazmak mümkündür. LLM, büyük miktarda karar metniyle 

karşılaştığında, bu fonksiyonun istatistiksel bir yaklaşıkçısı hâline gelir. Her yeni dava anlatımı, 

yeni bir 𝐹vektörüdür; karar, 𝐶’nin alanındaki bir noktadır; normlar ve içtihatlar ise metinler 

içinde gömülü birer bilgi kaynağıdır. Model, bu ilişkileri doğrudan formülize etmese de, dil 

içindeki tekrarlardan öğrenir. “Davacının talebinin reddine” dair kalıplar, belirli olgusal 

desenlerle birlikte görülmeye başlandığında, LLM bu desenleri içsel olarak modeller. 

Bu noktada hukuki metinler için olasılıksal bir bakış açısı devreye girer. LLM, belirli bir olgu 

seti 𝐹verildiğinde, belirli bir karar türünü 𝑐 üretme eğilimindedir. Bunu şu şekilde yazabiliriz: 

𝑝𝜃(𝐶 = 𝑐 ∣ 𝐹,bağlam) 

 

Bu dağılım, katı deterministik bir hukuk anlayışından uzak, ama pratik hukuki uygulamanın 

belirsizliğini yansıtan bir modeldir. Bu nedenle LLM’lerin hukuk alanında kullanımı, yalnızca 

metin özetleme ya da tematik sınıflandırma değildir; aynı zamanda, hukukun istatistiksel 

yüzünün bir yansıması hâline gelir. Elbette burada etik ve normatif riskler de büyüktür; bunlara 

bir sonraki bölümde döneceğiz. 

Bilimsel metinler ve akademik literatür, LLM’lerin belki de en çok çekildiği alanlardan biridir. 

Çünkü bu metinler, zaten baştan sona istatistiksel kavramlarla örülüdür. Bir klinik araştırma 

raporunda p-değeri, güven aralığı, etki büyüklüğü; bir fizik makalesinde hata çubukları, ölçüm 

belirsizlikleri; bir psikoloji çalışmasında varyans analizi ve regresyon modelleri dolaşır. LLM, 

böyle metinlerle eğitildiğinde, adeta istatistiksel düşüncenin dil içindeki izlerini takip etmeyi 

öğrenir. Örneğin bir hipotez testini ele alalım. Boş hipotez 𝐻0, alternatif hipotez 𝐻1ve test 

istatistiği 𝑇(𝑋)ile temsil edildiğinde, p-değeri 

𝑝 = 𝑃(𝑇(𝑋) ≥ 𝑇(𝑥obs) ∣ 𝐻0) 

 

şeklinde tanımlanır. LLM bu formülü bilmek zorunda değildir; ancak binlerce makalede aynı 

yapı ile karşılaştığında, “düşük p-değeri” ifadesinin “istatistiksel olarak anlamlı” kararına 

bağlandığını, “güven aralığı 0’ı içermiyorsa” ifadesinin belirli sonuçlarla beraber göründüğünü 

öğrenir. Bu, düşüncenin istatistiksel kalıplarının dil üzerinden modele sızmasıdır. 

Bilimsel alanlarda LLM kullanımı, yalnızca metin üretimi ile sınırlı kalmaz. Model, deney 

tasarımı önerileri, veri analizi adımlarının planlanması, olası yanlılık kaynaklarının listelenmesi 

gibi daha derin seviyelerde de rol oynayabilir. Bir deneyde karıştırıcı değişkenleri 

(𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠) belirlemek, aslında bir tür grafik model problemi olarak görülebilir; model, 

metinden yola çıkarak hangi değişkenlerin hangilerini etkileyebileceğine dair sezgisel bir graf 

çıkarır. Bu graf, formel olmasa bile, istatistiksel düşünceye oldukça yakındır. 

Tüm bu alanlarda ortak bir motif belirir: LLM, dilin içinde gömülü istatistiği emer. Sağlıkta 

tanı olasılıkları, finansda risk dağılımları, hukukta olgu–sonuç ilişkileri, bilimde hipotez 

testleri; hepsi dilsel kalıplar üzerinden modele taşınır. Model, bu kalıpların frekansını, 

bağlamlarını, birlikte görünme biçimlerini öğrenir ve sonunda, sadece grameri değil, alanların 

istatistiksel reflekslerini de içselleştirmiş bir yapı hâline gelir. 

Uygulama Alanlarında İleri Seviye Davranış Analizi, Vaka Örnekleri ve İstatistiksel Hata 

Dinamikleri  

Sağlık, finans, hukuk ve bilimsel metinlerde LLM davranışı yalnızca kavramların anlamıyla 

değil, aynı zamanda bu kavramların birbirleriyle kurduğu istatistiksel ilişkilerle belirlenir. Bir 
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modelin belirli bir vakayı nasıl yorumladığı, kelimelerin embedding uzayındaki 

konumlarından, attention başlıklarının bağlamı nasıl ağırlıklandırdığına kadar geniş bir 

mekanizma örgüsünün ürünüdür. Bu nedenle uygulama alanlarında model performansını 

değerlendirirken, yüzeysel metriklerden çok daha derine inmek gerekir. Model, bazen bir 

kelimeyi yanlış anlamaz; o kelimenin istatistiksel konumunu yanlış okur. Bu bölümde bu tür 

karmaşık olayların iç işleyişini inceleyeceğiz. 

Önce sağlık alanında tipik bir senaryo düşünelim. Bir klinik raporda şu cümle yer alsın: 

“Hastanın karın bölgesinde 48 saat içinde ilerleyen lokalize ağrı mevcut olup, bulgular apandisit 

ile uyumludur.” İyi eğitilmiş bir LLM, burada “ilerleyen ağrı”, “lokalize”, “apandisit ile 

uyumlu” gibi medikal ipuçlarını kullanarak tanıyı doğru yönde tahmin eder. Fakat model, aynı 

cümle içinde geçen başka bir terimin—örneğin “gaz şikâyeti”—fazla ağırlık alması hâlinde, 

olasılık dağılımı yanlış bir semantik yönelime kayabilir. Bu olay, attention mekanizmasının 

istatistiksel dengesizliğinden kaynaklanır: belirli token’ların key vektörleri, modelin eğitim 

verisindeki dağılım nedeniyle gereğinden fazla “çekici” olabilir. Eğer modelin eğitiminde gaz 

şikâyeti sıkça benign (tehlikesiz) durumlarla eşleşmişse, posterior olasılık dağılımı şu şekilde 

değişebilir: 

𝑝(akut apandisit ∣ 𝑥) → 𝑝(gaz distansiyonu ∣ 𝑥) 

 

Bu, salt kelime–kelime eşleşmesi değil, embedding uzayındaki semantik yakınlıkların öncelik 

kazanmasından kaynaklanır. Klinik raporların düzensiz yapısı, kısaltmalar, terminolojideki 

değişkenlik ve bağlamsal atlamalar bu istatistiksel dalgalanmayı büyütebilir. Bu nedenle sağlık 

modellerinde çok sık kullanılan bir yaklaşım, özel eğitilmiş domain-adaptive (alan uyarlamalı)  

fine-tuning (ileri besleme) ve yapısal regularization yöntemleridir; modelin karar uzayının 

belirli bölgelerinin aşırı aktif olmasını engeller. İstatistiksel olarak bu durum, posterior’u 

yeniden şekillendiren bir prior eklemek gibidir. 

Finans alanında bir örnek ele alalım. Bir analist raporunda “Likidite riski kısa vadede arttı, 

ancak bilanço yapısı güçlü olduğu için uzun vadeli temerrüt riski düşüktür.” ifadesi geçsin. Bu 

cümlede kısa vadeli risk yükselirken uzun vadeli risk düşmektedir; yani metin iki farklı zaman 

ufkunda iki farklı olasılık dağılımını ima eder. LLM’ler çoğu zaman bu tür çok katmanlı risk 

ifadelerini ağırlıklandırmakta zorlanır. Çünkü embedding uzayında “risk artışı” ve “risk 

azalması” terimleri genellikle güçlü, karşıt semantik vektörler üretir ve model bu karşıtlığı tek 

bir eksen üzerinde işlemeye eğilimlidir. Oysa burada iki eksenli bir yapı vardır: zaman ufku ve 

risk yönü. Bu durum matematiksel olarak şöyle temsil edilebilir: 

𝑝(risk ∣ kısa) ≠ 𝑝(risk ∣ uzun) 

Fakat LLM, çoğu durumda bu iki koşullu dağılımı tek bir gölge dağılımda birleştirir: 

𝑝𝜃(risk ∣ bağlam) 

Bu gölge dağılım, bazen kısa vadeli sinyalleri uzun vadeli bağlamlara taşır. Bu istatistiksel 

karışma, finans modellerinde sık görülen yanlış çıkarımların kaynağıdır. Örneğin model, kısa 

vadeli volatilite artışını tüm ufuklara genelleyebilir. Bu, risk modellemede “volatilite 

klasterleşmesi” fenomenine benzer bir biçimde, embedding klasterleşmesinin hatalı bir 

yansımasıdır. Bu nedenle finans LLM’lerinde bağlam ayrıştırıcı attention maskeleme teknikleri 

kullanılmaya başlanmıştır; kısa vadeli ifadelerin uzun vadeli bağlam ağırlıklarını bozmasını 

engeller. 
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Hukuk alanında hata dinamikleri çok daha inceliklidir. Bir dava özetinde “Sanığın kastı 

bulunmadığından ceza tayin edilmemiştir.” cümlesi geçtiğini düşünelim. Model, burada “kastın 

bulunmaması” ile “ceza tayin edilmemesi” arasındaki hukuki nedenselliği doğru yakalayabilir; 

fakat aynı bağlamda şöyle bir ifade yer alıyorsa—“Bu nedenle maddi tazminat talebi 

reddedilmiştir.”—model bazen kast–ceza ilişkisini maddi tazminata da genelleyebilir. Oysa 

ceza hukuku kast ile ilgilidir; maddi tazminat ise özel hukuk sorumluluğudur ve çoğu zaman 

kusur kavramıyla ilişkilidir. LLM bu ayrımı her zaman içselleştirmez. Bu hata, istatistiksel 

olarak “yanlış nedensel bağımlılık öğrenme” problemiyle örtüşür. Bir olgu kümesi 𝐹, iki farklı 

sonuç kümesi 𝐶1(ceza hukuku) ve 𝐶2(özel hukuk) ile ilişkili olabilir: 

𝑝(𝐶1 ∣ 𝐹) ≠ 𝑝(𝐶2 ∣ 𝐹) 

Fakat model, eğitiminde bu iki ilişkiyi ayrı ayrı görmediğinde, tek bir birleşik dağılım öğrenir: 

𝑝𝜃(𝐶 ∣ 𝐹) 

Bu durum, hukuki bağlamların ayrışmasını engeller ve LLM’nin karar tavsiyelerinde “alanlar 

arası aşırı genelleme” denilen bir fenomen yaratır. Bu fenomen hem etik hem hukuki açıdan 

kritik bir risk oluşturur; çünkü yanlış alana ait normatif sonuçlar tahmin edilirse, model yanılgısı 

gerçek hayatta ciddi karar hatalarına yol açabilir. 

Bilimsel alanlarda ise modelin hataları genellikle metodolojik kavramların embedding 

uzayındaki yakınlık ilişkilerinden doğar. Örneğin “korelasyon” ve “nedensellik” kavramlarını 

ele alalım. Bu iki kavram semantik olarak yakın görünür, ancak istatistiksel olarak ayrıdır. Bir 

çalışmada “iki değişken arasında güçlü bir korelasyon bulundu” ifadesi, LLM tarafından bazen 

“A, B’ye neden oluyor olabilir” şeklinde yorumlanabilir; çünkü metinlerde korelasyon 

bulgusunun çoğu zaman nedensel spekülasyonlarla bir arada geçtiği örneklerle karşılaşmıştır. 

Bu durumda model, şu yanlış çıkarımı yapmaya eğilimli olabilir: 

Corr(𝑋, 𝑌) ⇒ Caus(𝑋 → 𝑌) 

Oysa istatistikte bilindiği gibi, korelasyon şu şekilde tanımlanır: 

𝜌𝑋𝑌 =
Cov(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

ve hiçbir şekilde nedenselliği garanti etmez. Model bu farkı sezgisel olarak ayırt edemediğinde, 

bilimsel yazı üretiminde hatalı çıkarımlar yapabilir. Bu nedenle bilimsel LLM 

uygulamalarında, nedensellik ve korelasyon kavramları embedding uzayında özel olarak 

ayrıştırılır; bu ayrıştırma genellikle kontrastif öğrenme teknikleri ile yapılır. İstatistiksel olarak 

bu işlem, iki kavramın vektör dağılımlarını farklı modal manifoltlara itmek gibidir. 

Bu hataların tümü, LLM’lerin “dil alanlarının istatistiksel haritalarını” nasıl öğrendiğiyle 

ilgilidir. Sağlık, finans, hukuk ve bilimsel disiplinler, doğal dilin içine gömülü farklı istatistiksel 

ilişkiler taşır. Bir LLM bu ilişkileri doğru öğrenirse alan uzmanlığı gösterir; yanlış öğrenirse 

alan-özel hatalar üretir. Bu nedenle model değerlendirmesi yalnızca doğruluk, F1 veya BLEU 

gibi yüzeysel metriklerle değil, alan istatistiğinin iç yapısını hedefleyen daha karmaşık 

yöntemlerle yapılmalıdır. 

Uygulama Alanlarında İleri Davranış Analizi  

Uygulama alanlarını konuşurken şimdiye kadar hep metin merkezli örnekler üzerinden 

yürüdük; fakat modern LLM ekosisteminde metin artık çoğu zaman tek veri formu değil. 

Sağlıkta görüntüleme verileri, sensör çıktıları ve yapılandırılmış elektronik sağlık kayıtları; 

finansta zaman serileri, fiyat akışları ve işlem defterleri; hukukta şema hâline getirilmiş 
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mevzuat ağları ve içtihat grafikleri; bilimsel dünyada ise deneysel tablolar, grafikleri ve 

şekillerle birlikte anılıyor. LLM’ler bu farklı modalitelerle ilişki kurmaya başladığında, 

istatistiksel davranışları da yeni bir boyuta taşınıyor. 

Örneğin çok modlu bir klinik sistemde metin, görüntü ve laboratuvar verisi aynı anda işleniyor 

olsun. Metin tarafında bir LLM, görüntü tarafında bir konvolüsyonel ağ veya transformer 

tabanlı görsel model, sayısal tarafta ise klasik istatistiksel özetler (ortalama, varyans, z-puanları) 

devreye giriyor. Bu durumda model aslında ortak bir latent uzayda birleşmiş üç farklı dağılımı 

öğrenmeye çalışıyor. Metin için öğrenilen temsil vektörlerini ℎ(𝑡𝑒𝑥𝑡), görüntü için ℎ(𝑖𝑚𝑔), 

sayısal bulgular için ℎ(𝑙𝑎𝑏)ile gösterirsek, çok modlu bir füzyon katmanı bu temsilleri birleştirip 

tek bir birleşik temsil 𝑧üretiyor: 

𝑧 = 𝑓(ℎ(𝑡𝑒𝑥𝑡), ℎ(𝑖𝑚𝑔), ℎ(𝑙𝑎𝑏)) 

 

Bu birleşik temsil, tanı ya da risk tahmini gibi bir çıktıya bağlandığında, artık tek bir 

modalitenin hataları değil, tüm modalitelerin ortak istatistiksel dengesizlikleri rol oynamaya 

başlıyor. Örneğin görüntü verisinde eğitimin büyük kısmı belirli bir demografiye aitse, metin 

tarafında bu demografi az temsil edilmiş bile olsa, birleşik model belirli gruplar üzerinde 

sistematik yanlılık üretebilir. Bu, çok modlu domain shift’in tipik bir örneğidir. 

Domain shift, yani eğitim dağılımı ile kullanım anındaki dağılımın farklılaşması, LLM’lerin 

tüm alanlardaki en kritik istatistiksel problemlerinden biridir. Teorik çerçevede bunu basitçe 

şöyle yazabiliriz: Eğitim sırasında gözlemlenen dağılım 𝑃train(𝑋, 𝑌), kullanım sırasında 

karşılaşılan dağılımdan 𝑃test(𝑋, 𝑌)farklıdır. En sık rastlanan biçimi, kovaryat kayması denen 

durumdur: 

𝑃train(𝑋) ≠ 𝑃test(𝑋), 𝑃(𝑌 ∣ 𝑋) yaklas̒ık sabit 

 

Bu, özellikle finans ve sağlık alanında çok tipiktir. Pandemi başladığında önceki yılların hasta 

profilleriyle yeni vaka profilleri arasındaki fark, bir gecede tüm klinik modelleri domain shift 

ile yüz yüze bırakmıştır. Benzer şekilde, finansal kriz günlerinde normal dönemlerde hiç 

görülmeyen fiyat hareketleri, eğitilmiş modellerin tahmin uzayının dışına düşer. LLM’ler de bu 

tür kaymalarda, eğitimde hiç görmedikleri bağlam kombinasyonlarını üretmek zorunda kalır ve 

bazen istatistiksel sezgilerini tamamen kaybedebilir. 

Domain shift’in daha karmaşık bir türü, etiket dağılımının kaydığı label shift durumudur: 

𝑃train(𝑌) ≠ 𝑃test(𝑌) 

 

Hukuk alanında örneğin belirli bir dönemde açılan dava türlerinin dağılımı değiştiğinde, geçmiş 

içtihat üzerinden eğitilmiş model, yeni dönemin ağırlıklarını yansıtamaz. Bir anda idari 

davaların oranı artmışsa, eski karar metinlerine dayanan bir LLM, idari yargıdaki yeni 

eğilimleri doğru yorumlayamayabilir. Bu, modelin “tarihsel prior”larının güncel dağılımla 

uyumsuz hâle gelmesi anlamına gelir. 

Domain adaptasyonu bu noktada devreye girer. Modern LLM pratiklerinde genellikle iki tür 

adaptasyon kullanılır: alan uyumlu ön-eğitim (domain-adaptive pretraining) ve ince ayarlı 

görev eğitimi (fine-tuning). Alan uyumlu ön-eğitimde model, genel dil veri kümesinden sonra 

sadece belirli alanın metinleri üzerinde ek bir dil modelleme aşamasına tabi tutulur. Bu, 
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parametrelerin o alanın tipik istatistiksel kalıplarına doğru kaydırılması anlamına gelir. 

Matematiksel olarak, modelin önce genel dağılımı 

𝑝𝜃(𝑥) 

 

öğrendiğini, ardından alan dağılımına göre bir güncelleme yaptığını düşünebiliriz: 

𝑝𝜃′(𝑥) ∝ 𝑝𝜃(𝑥) ⋅ 𝑤𝐴(𝑥) 

 

Burada 𝑤𝐴(𝑥), alan 𝐴’ya ait örnekleri ağırlıklandıran bir terim gibi düşünülebilir; teknik olarak 

doğrudan böyle uygulanmasa da, sezgisel olarak alan eğitimi posterioru alan yönünde 

günceller. Fine-tuning ise belirli bir göreve koşullu dağılımı öğrenir. Örneğin sağlık alanında 

“metinden ICD kodu tahmini” gibi bir görevde model, artık 

𝑝𝜃′′(𝑦 ∣ 𝑥, 𝐴) 

 

şeklinde daha dar bir dağılımı optimize eder. 

Bu adaptasyon süreçlerinde LoRA gibi düşük dereceli adaptasyon tekniklerinin giderek öne 

çıkması, istatistiksel açıdan şunu anlatır: Modelin tüm ağırlıklarını değiştirmek yerine, yalnızca 

düşük rütbeli bir alt uzayı güncellemek çoğu zaman yeterlidir. Büyük dil modelinin çekirdeği 

sabit kalırken, alan-özel küçük matrisler eklenir. Sembolik olarak şöyle yazılabilir: 

𝑊yeni = 𝑊eski + 𝐴𝐵⊤ 

 

Burada 𝐴ve 𝐵küçük boyutlu matrislerdir. Bu yapı, lineer cebir açısından düşük rütbeli bir 

düzeltme, istatistiksel açıdan ise genel prior üzerine alan-özel bir posterior düzeltmesi gibidir. 

Böylece model, hem genel dili hem de alanın özgün dilini taşıyabilir. 

Graf yapılarının entegrasyonu da uygulama alanlarında giderek önem kazanıyor. Özellikle 

hukuk ve bilimsel metinlerde, kavramlar arasında açıkça tanımlanmış ilişkiler vardır: mevzuat 

maddeleri başka maddelere atıf yapar, makaleler birbirini kaynakça üzerinden ilişkilendirir. Bu 

ilişkileri grafikler hâlinde temsil etmek mümkündür. LLM, metni işlerken bu grafiklerden gelen 

yapısal sinyalleri de kullanırsa, artık yalnızca sıradaki kelimeyi tahmin eden bir model değil, 

aynı zamanda bilgi ağında gezinmesini bilen bir yürüyücü hâline gelir. Rastgele yürüyüş 

(random walk) kavramı burada ön plana çıkar: 

𝑃(𝑣𝑡+1 = 𝑗 ∣ 𝑣𝑡 = 𝑖) =
𝑤𝑖𝑗

∑𝑘 𝑤𝑖𝑘
 

 

Bu geçiş olasılıkları temsili, bir makaleden diğerine, bir içtihattan diğerine atlayan bir gezginin 

davranışını tanımlar. Bir LLM bu yürüyüşü metin üretimi ile birleştirdiğinde, bazen metnin 

içinde gizli bir graf üzerinde gezinir; atıflara, referanslara ve kavramsal bağlantılara göre içerik 

üretir. Bu, özellikle bilimsel özetleme ve hukukta karar analizi gibi görevlerde modelin 

istatistiksel davranışını belirgin biçimde zenginleştirir. 

Tüm bu mekanizmalar –çok modlu veri, domain shift (alan sıçraması), domain adaptasyonu, 

düşük rütbeli düzeltmeler, grafik entegrasyonu– uygulama alanlarındaki LLM davranışının 

yüzeyde gördüğümüz “akıllı cevaplardan” çok daha karmaşık bir istatistiksel altyapıya 

dayandığını gösteriyor. Bu altyapı doğru tasarlandığında model güven verir; yanlış ya da eksik 

tasarlandığında ise sistematik hatalar ve derin yanlılıklar üretir. 
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Böylece uygulama alanları bölümünün sonuna yaklaşırken, doğal olarak şu soruya geliyoruz: 

Tüm bu istatistiksel mekanizmalar, risk ve belirsizliği nasıl yönetiyor? Yanlılık, adalet, 

güvenilirlik ve “hallucination” dediğimiz olgu, modellerin altında yatan istatistiksel süreçlerde 

nasıl ortaya çıkıyor? Şimdi bu sorulara geçme zamanı. 

İstatistiksel Riskler, Yanlılık (Bias), Belirsizlik ve Güvenilirlik 

Büyük dil modellerinin hayranlık uyandıran tarafı olduğu kadar tedirgin eden tarafı da, son 

derece kendinden emin cümlelerle yanlış, eksik veya taraflı sonuçlar üretebilmeleridir. Bu olgu, 

çoğu zaman halüsinasyon (hallucination) diye adlandırılıyor; ancak gerçekte istatistiksel bir 

fenomenle karşı karşıyayız: Model, aslında bildiği dağılımın dışındaki noktalara da aynı 

özgüvenle olasılık atamaya eğilimli. Bu, belirsizliğin doğru yönetilememesinden, kalibrasyon 

hatalarından ve verinin kendisinde var olan yanlılıklardan besleniyor. 

Belirsizliği anlamak için önce iki temel kategoriye ayırmak faydalı: aleatorik (şansa bağlı) ve 

epistemik (hakikatle ilgili~bilişsel) belirsizlik. Aleatorik belirsizlik, doğanın içsel 

rastgeleliğiyle ilgilidir; örneğin bir zarın atılmasında kaç geleceğini bilemeyiz, çünkü süreç 

rasgele tanımlıdır. Epistemik belirsizlik ise modelin bilgisizliğinden kaynaklanır; yeterince veri 

görmediği için emin değildir. LLM’ler için bu ayrım, şu şekilde yorumlanabilir: Dilin kendi 

doğasından gelen çok anlamlılık ve bağlam belirsizliği aleatorikken, modelin hiç görmediği bir 

alanın jargonunu yanlış anlaması epistemiktir. 

Saf istatistikte belirsizlik çoğu zaman dağılım üzerinden ifade edilir. Bir tahmin modeli için 

güven aralığı çizilir, posterior dağılım hesaplanır ya da tahmin birlikte bir varyans değeri 

raporlanır. LLM’ler ise genellikle yalnızca en olası kelimeyi veya cümleyi sunar. Oysa model 

bir yanıt verdiğinde, içsel olarak bir olasılık dağılımına sahiptir. Bu dağılımın kalibrasyonu 

önemlidir. İyi kalibre edilmiş bir modelde, yüzde 80 güvenle yaptığı tahminler gerçekten de 

vakaların yaklaşık yüzde 80’inde doğru çıkar. Bunu ölçmek için kullanılan metriklerden biri 

beklenen kalibrasyon hatasıdır (expected calibration error, ECE): 

ECE = ∑

𝑀

𝑚=1

∣ 𝐵𝑚 ∣

𝑛
∣ acc(𝐵𝑚) − conf(𝐵𝑚) ∣ 

 

Burada 𝐵𝑚güven aralığına göre bölünmüş örnek gruplarını, acc(𝐵𝑚)o gruptaki gerçek 

doğruluğu, conf(𝐵𝑚)ise modelin rapor ettiği ortalama güveni ifade eder. LLM’ler pratikte 

sıklıkla aşırı kendine güvenli davranırlar; yani confdeğeri acc’den büyüktür. Bu aşırı özgüven, 

modelin “yanlış hâlde bile doğruymuş gibi konuşması” fenomenini yaratır. 

Yanlılık (bias) ise başka bir katmandan gelir. Eğitim verisi, toplumdaki güç ilişkilerinin, tarihsel 

eşitsizliklerin, dildeki stereotiplerin bir yansımasıdır. Model, bu veriler üzerinden dil dağılımını 

öğrenirken, ayrımcı kalıpları da istatistiksel bir “gerçek” gibi içselleştirebilir. Örneğin belirli 

mesleklerin belirli cinsiyetlerle daha sık birlikte anılması, embedding uzayında meslek 

vektörlerinin cinsiyet vektörlerine kaymasına neden olabilir. Bunu sezgisel bir vektör hesabıyla 

temsil edebiliriz: 

𝑣(doktor) − 𝑣(erkek) ≈ 𝑣(mühendis) − 𝑣(erkek) 

 

gibi ilişkiler güçlenirken, 

𝑣(doktor) − 𝑣(kadın) 
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vektörü daha zayıf kalabilir. Bu tür kaymalar, modelin üretiminde sistematik önyargılara yol 

açar; kadın doktor yerine erkek doktoru örneklemesi daha olası hâle gelir. İstatistiksel bakışla, 

bu bir tür örnekleme yanlılığıdır; eğitim dağılımında belirli kombinasyonların sık, bazılarının 

seyrek olması, modelin tahmin uzayını eğri bir biçimde şekillendirir. 

Yanlılığı analiz etmek için çeşitli adalet metrikleri kullanılır. Örneğin, iki grup için pozitif karar 

olasılıklarını karşılaştırdığımızda, eşitlik beklentisi 

𝑃(𝑌̂ = 1 ∣ 𝐴 = 0) ≈ 𝑃(𝑌̂ = 1 ∣ 𝐴 = 1) 

 

şeklinde ifade edilebilir. Burada 𝐴⁡duyarlı bir özellik (örneğin cinsiyet, etnik köken), 𝑌̂⁡model 

kararını temsil eder. LLM bazlı sistemlerde bu tür oranlar doğrudan çıkmayabilir; fakat belirli 

senaryoların modelle nasıl ifade edildiğine bakılarak dolaylı olarak ölçülebilir. Örneğin “başarı 

hikâyesi” isteklerinde modelin hangi demografik figürleri daha sık üretmesi, bu nispi 

olasılıkların pratiğe yansımasıdır. 

Halüsinasyon (hallucination) dediğimiz olgu, istatistiksel açıdan şöyle okunabilir: Model, 

gerçek dünya bilgi dağılımı 𝑃gerc̒ek(𝑥)yerine yalnızca kendi öğrendiği dil dağılımı 

𝑃𝜃(𝑥)üzerinden örnekleme yapar. Dil dağılımı, gerçeğin bir gölgesidir; bilgi kaynakları 

sınırlıysa veya eğitim verisi eksikse, 𝑃𝜃ile 𝑃gerc̒ekarasındaki fark büyür. Model, aslında hiç 

gözlenmemiş ama dilsel olarak makul görünen örnekleri yüksek olasılıkla seçebilir. Bu durum, 

özellikle kaynak gösterme ya da teknik ayrıntı sunma gibi görevlerde kendini belli eder. Model, 

“bilinmeyen”i açıkça ifade etmek yerine, öğrenilmiş kalıplardan türetilmiş bir “uydurulmuş 

ama tutarlı” metin üretir. 

Belirsizliğin güvenilir şekilde yönetilmesi için iki tür strateji öne çıkar. İlki, modelin cevap 

üretirken kendi eminlik düzeyini sinyallemesi, yani içsel olasılık dağılımının belirsizliğini 

dışarı vurmasıdır. Bu, sıcaklık (temperature) ve örnekleme stratejileriyle birlikte, belirli 

görevlerde daha temkinli davranmasını sağlayabilir. İkinci strateji, modelin yanıtlarının dış 

bilgi kaynaklarıyla çapraz doğrulanmasıdır. Özellikle hukuk, sağlık ve bilimsel alanlarda, LLM 

yanıtlarının veri tabanları, kılavuzlar veya makalelerle otomatik karşılaştırılması, hatalı 

örneklerin riskini azaltır. Bu ikinci strateji, doğru tasarlanırsa, modelin 𝑃𝜃’sini daha sık 𝑃gerc̒ek’e 

projekte eden bir düzeltme mekanizması gibi çalışır. 

Güvenilirlik meselesi, istatistiksel hataların ötesinde bir toplumsal boyut taşır. Bir modelin 

istatistiksel olarak iyi performans göstermesi, tüm gruplar için adil sonuçlar ürettiği anlamına 

gelmez. Bu noktada “riskin dağılımı” kavramı önem kazanır. Aynı toplam hata oranına sahip 

iki modelden biri, hatalarını rastgele dağıtıyorsa, diğeri belirli bir grupta yoğunlaştırıyorsa, 

ikincisi etik açıdan çok daha sorunludur. İstatistiksel formalizmde benzer toplam riskler eşdeğer 

görülebilir; fakat toplumda doğruluk kadar adalet de bir performans kriteridir. 

Sonuçta istatistiksel risk, yanlılık, belirsizlik ve güvenilirlik birbirine sıkıca bağlıdır. LLM’lerin 

altındaki istatistiksel teknikler ne kadar zarif olursa olsun, verinin doğasındaki bozukluklar, 

modelin tasarımında yapılan seçimler ve kullanım bağlamındaki güç ilişkileri, çıktının etik 

niteliğini belirler. Bu nedenle LLM’ler için geliştirilen her yeni istatistiksel yöntem, aynı 

zamanda yeni bir sorumluluk alanını da beraberinde getirir. 
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10 – Genel Tartışma: İstatistiksel Tekniklerin Bütünleşmesi ve LLM Paradigması 

Bu noktaya kadar parçalar hâlinde incelediğimiz her şey, aslında tek bir bütünün farklı yüzleri. 

Olasılık teorisi, bilgi teorisi, istatistiksel öğrenme kuramı, Bayesian çıkarım, EM algoritması, 

Markov zincirleri, PCA ve SVD gibi boyut indirgeme yöntemleri, olasılıksal grafik modeller, 

optimizasyon teknikleri, Transformer mimarisi ve uygulama alanlarında ortaya çıkan risk ve 

yanlılık dinamikleri; bunların hiçbiri LLM’lerden bağımsız, ayrı dünyalar değil. Tam tersine, 

büyük dil modelleri bu tekniklerin hepsini içeren bir tür “istatistiksel orkestrasyon” olarak 

görülebilir. Bir anlamda, modern LLM paradigması, istatistiksel düşüncenin son kırk yılda 

geçirdiği evrimin somutlaşmış bir sentezidir (Bishop, 2006; Murphy, 2023). 

Dil modellemenin en temel düzeyinde, hâlâ 𝑃(𝑤𝑡 ∣ 𝑤<𝑡)şeklindeki koşullu olasılık düşüncesi 

yatıyor. Bu düşünce, hem klasik n-gram modellerini hem de günümüzün dev transformer 

mimarilerini birleştiren basit ama güçlü bir iplik gibi. Bilgi teorisinin entropi ve çapraz entropi 

kavramları, kayıp fonksiyonunun matematiksel gövdesini oluşturuyor (Cover & Thomas, 

2006). İstatistiksel öğrenme kuramı, empirik risk minimizasyonu ve düzenlileştirme sayesinde, 

bu kaybı minimize ederken modelin genelleme yapabilir olmasını sağlıyor. Bias–variance 

tartışması, LLM’lerin neden aşırı parametreli olmalarına rağmen işe yaradığını anlamamızda 

hâlâ temel bir kavramsal çerçeve sunuyor (Hastie et al., 2009). 

Bayesian bakış açısı, posterior mantığıyla belirsizliğin nasıl güncelleneceğini anlatırken, 

Markov zincirleri ve MCMC yöntemleri yüksek boyutlu dağılımlarla baş etmenin algoritmik 

yollarını gösteriyor (Gelman et al., 2013). Her ne kadar modern LLM’ler kelimenin klasik 

anlamıyla “tamamen Bayesci” olmasa da, örnekleme stratejilerinin ve temperature temelli 

olasılık manipülasyonlarının arkasında bu fikirlerin gölgesi net şekilde görülebilir. Bir dil 

modeli, aslında her adımda posterior benzeri bir inanç güncellemesi gerçekleştiriyor; yalnızca 

bunu açık formüllerle değil, sinir ağı parametrelerinin içkin temsil gücüyle yapıyor. 

EM algoritması, gizli değişkenli modellerde parametre tahmini için geliştirilmiş bir yöntem 

olarak tarih sahnesine çıktı (Dempster et al., 1977; Rabiner, 1989). HMM’ler, IBM çeviri 

modelleri ve çeşitli karışım modelleri üzerinden dilin istatistiksel yapısını öğrenmenin yollarını 

açtı. Bugün transformer tabanlı LLM’lerde açık bir EM döngüsü görmüyoruz; ama her 

katmanda iç temsilin güncellenmesi ve bu temsil üzerinden parametrelerin geri yayılımla 

düzeltilmesi, kavramsal olarak “tahmin et ve güncelle” döngüsünün modern bir yorumu gibi. 

Özellikle mixture-of-experts (karmaşa uzmanı) yapıların yükselişi, gizli değişkenli karışım 

modellerini doğrudan tekrar gündeme taşıyor (Shazeer et al., 2017). 

Boyut indirgeme teknikleri, özellikle PCA ve SVD, dilin yüksek boyutlu temsilini daha 

kavranabilir bir geometrik yapıya oturtmanın temel araçları oldu (Jolliffe, 2002). Word2Vec ve 

GloVe gibi erken embedding yöntemlerinin, log-olasılık matrisleri üzerinden dolaylı SVD 

benzeri faktörizasyonlar gerçekleştirdiği gösterildi (Mikolov et al., 2013; Pennington et al., 

2014). Transformer tabanlı LLM’lerde embedding boyutları büyüdükçe, bu gömülü geometri 

daha da önemli hâle geldi. Embedding uzayı, dilin istatistiksel “haritası”dır; PCA bu haritada 

baskın anlam eksenlerini, SVD ise global yapıyı ortaya çıkarır. Bu uzayın lineerliği, 

analogilerin vektörel olarak ifade edilebilmesini mümkün kılar; 𝑣(king) − 𝑣(man) +

𝑣(woman) ≈ 𝑣(queen)benzeri ilişkiler tesadüf değil, bu geometrik yapının ürünüdür (Mikolov 

et al., 2013). 
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Olasılıksal grafik modeller, bağımlılık yapılarının açıkça ifade edildiği bir dil sunar (Koller & 

Friedman, 2009). Transformer’ın self-attention mekanizması, her bir katmanda dinamik olarak 

öğrenilen, veriyle belirlenen bir graf gibi yorumlanabilir. Attention matrisleri, token’lar 

arasındaki koşullu bağımlılıkların ağırlıklı kenarlarını temsil eder; softmax ile normalize edilen 

bu ağırlıklar, her bir kelimenin bağlamdaki diğer kelimelere “ne kadar kulak verdiğini” gösterir 

(Vaswani et al., 2017). Grafik modellerdeki faktörizasyon fikri, burada attention ile yeniden 

canlanır; model, dilin tam ortak dağılımını değil, faktörize bir koşullu yapı üzerinden öğrenir. 

Optimizasyon cephesinde SGD, Adam, momentum ve benzeri yöntemler, LLM’lerin devasa 

parametre uzayında bir tür “istatistiksel devinim”dir (Kingma & Ba, 2015). Loss yüzeylerinin 

yüksek boyutlardaki nispeten “düz” yapısı, iyi genelleme yapan geniş ağların varlığını 

açıklamaya yardımcı olur (Keskar et al., 2017). Bu açıdan bakıldığında, eğitim süreci yalnızca 

bir mühendislik detayı değil; aynı zamanda modelin hangi tür minimumlara yerleşeceğini 

belirleyen temel bir istatistiksel süreçtir. Düz minimumlar genellikle daha az hassas, daha 

kararlı ve yeni örneklere karşı daha bağışlayıcı çözümlere karşılık gelir. 

Transformer mimarisi, tüm bu tekniklerin birleştiği bir tür istatistiksel işleme hattıdır. Positional 

encoding, dilin sırasını sürekli bir uzaya kodlar; self-attention, koşullu benzerlikleri iç çarpımlar 

üzerinden ağırlıklandırır; multi-head attention (çok başlı dikkat), aynı veriye farklı istatistiksel 

perspektifler uygular; feed-forward (ileri beslemeli)  ağlar, yerel doğrusal olmayan regresyonlar 

olarak temsilleri zenginleştirir; residual (kalıntı) bağlantılar ve layer normalization, istatistiksel 

kararlılığı artırır (Vaswani et al., 2017; Ba et al., 2016). Bu bileşenler birlikte çalıştığında, 

model yalnızca “metin ezberleyen” bir yapı olmaktan çıkar; dilin altında yatan olasılık 

dağılımlarına erişen bir hesaplama mekanizmasına dönüşür. 

Uygulama alanlarına döndüğümüzde, sağlık, finans, hukuk ve bilimsel araştırma gibi 

disiplinlerde LLM’lerin davranışını anlamak için yine istatistiğe sığınıyoruz. Klinik kararlarda 

duyarlılık ve özgüllük, finansal riskte kovaryans ve volatilite, hukukta içtihat ağının graf yapısı, 

bilimsel metinlerde hipotez testleri ve güven aralıkları; tüm bunlar LLM davranışının alan-özel 

değerlendirme araçları hâline gelmektedir. Model, bir bakıma bu alanların istatistiksel 

reflekslerini dil üzerinden öğreniyor. Bu öğrenme doğru olduğunda model ikna edici ve faydalı; 

yanlış olduğunda ise son derece tehlikeli bir hâl almaktadır. 

Risk, yanlılık ve belirsizlik tartışması ise tüm bu teknik güzelliğin karanlık tarafını açığa 

çıkarmaktadır. Eğitim verisindeki örnekleme yanlılıkları, tarihten miras duran eşitsizlikler, 

kalibrasyonu bozulmuş olasılık tahminleri ve dağılım kaymaları, LLM çıktılarında sistematik 

hatalara neden olabilmektedir. (Barocas et al., 2019; Mitchell et al., 2019). Hallucination 

olgusu, modelin kendi öğrendiği dil dağılımını gerçek dünyanın üzerine aşırı güvenle projekte 

etmesi olarak okunabilir; epistemik belirsizliğin açıkça ifade edilmemesi, hatanın riskli bir 

özgüvenle paketlenmesine yol açımaktadır. 

Tüm bu tabloya yukarıdan baktığımızda, LLM’lerin aslında birer “istatistiksel koalisyon” 

olduğu ortaya çıkmaktadır. Farklı istatistiksel teknikler, teorik ve pratik katmanlarda üst üste 

binmektedir; her katman kendi rolünü oynamakta, nihai davranış bu katmanların etkileşiminden 

doğmaktadır. LLM’ler ne sihir ne de yalnızca mühendislik başarısı; onlar onlarca yıllık 

istatistiksel düşüncenin, bilgisayar gücüyle çarpılmış bir devamıdır. 
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Sonuç: İstatistiksel Temelden Dilsel Yaratıcılığa 

Büyük dil modellerinin altında yatan istatistiksel tekniklere baktığımızda, modern yapay 

zekânın aslında ne kadar klasik sorularla uğraştığını fark etmakteyiz. “Bir olasılık dağılımını 

veri üzerinden nasıl tahmin ederim?”, “Gördüğüm örneklerden görmediklerime doğru nasıl 

genellerim?”, “Belirsizliği nasıl ifade eder, nasıl yönetirim?”, “Gizli yapıların varlığını nasıl 

keşfederim?” gibi sorular, istatistik biliminin en eski sorularıdır. LLM’ler yalnızca bu sorulara 

verilen yanıtların ölçüsünü büyütmektedir; veri miktarını, parametre sayısını, hesaplama 

gücünü ve dolayısıyla modelin ifade kapasitesini olağanüstü seviyelere taşımaktadır. 

Bu çalışmada olasılık ve bilgi teorisinden başlayarak, istatistiksel öğrenme kuramı, Bayesian 

yaklaşım, EM, Markov zincirleri, boyut indirgeme, olasılıksal grafik modeller, optimizasyon, 

Transformer mimarisi ve uygulama alanlarının tamamı boyunca LLM’lerin istatistiksel 

iskeletini ortaya sermeye çalıştık. Çıkan resim, LLM’lerin yalnızca “derin sinir ağları” değil, 

aynı zamanda çok katmanlı istatistiksel sistemler olduğu yönünde oldu. Her bir teknik, modelin 

bir parçasını taşımaktadır; olasılık dağılımları, latent temsiller, çekirdek fonksiyonları, 

faktörizasyonlar ve gradyan akışları hep birlikte çalışmaktadır. 

Diğer yandan, bu istatistiksel güç tek başına bir güven garantisi değildir. Yanlılık, belirsizlik, 

kalibrasyon bozuklukları ve dağılım kaymaları, modelleri hem daha kırılgan hem de toplumsal 

düzeyde daha riskli hâle getirebilmektedir. Özellikle sağlık, hukuk ve finans gibi yüksek etkili 

alanlarda, LLM tabanlı sistemlerin istatistiksel özelliklerini anlamak, etik ve hukuki 

sorumlulukların bir parçası hâline gelmektedir. Model performansını değerlendirirken yalnızca 

doğruluk oranına değil, hatanın kimin üzerinde yoğunlaştığına, hangi grupların daha büyük risk 

altında olduğuna, belirsizliğin ne kadar şeffaf ifade edildiğine bakmak zorundayız. 

Geleceğe dönük olarak, LLM araştırmalarının önemli bir kısmı muhtemelen daha açık Bayesian 

mekanizmalar, daha iyi belirsizlik tahmini, daha sağlam domain adaptasyonu, daha şeffaf 

grafiksel temsil ve daha iyi kalibrasyon teknikleri etrafında şekillenecek. Variational inference, 

MCMC türevleri, derin olasılıksal programlama gibi alanlar ile büyük dil modelleri arasındaki 

köprüler güçlendikçe, istatistiksel temelin de daha görünür hâle geleceği söylenebilir (Blei et 

al., 2017; Kingma & Welling, 2014; Murphy, 2023). 

Yani LLM’ler, insan dilinin olasılıksal bir aynasıdır. Bu aynada gördüğümüz yalnızca gramer 

ve kelime dizilişi değil; aynı zamanda dünya hakkında taşıdığımız istatistiksel sezgiler, ön 

yargılar, bilgi birikimi ve boşluklardır. Bu yüzden LLM’leri anlamak, biraz da kendimizi, dille 

kurduğumuz ilişkiyi ve belirsizliği nasıl yönettiğimizi anlamaktır. İstatistiksel teknikler bu 

anlamanın dili; LLM’ler ise bu dilin bugünkü en çarpıcı uygulamalarıdır. 

 

REFERENCES 

• Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. 

• Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint 

arXiv:1607.06450. 

• Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and machine learning. 

Fairness in Machine Learning. 

• Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review 

for statisticians. Journal of the American Statistical Association, 112(518), 859–877. 



  

124 
 

İSTATİSTİKSEL YÖNTEMLERİN YENİ BAHARI: BÜYÜK DİL MODELLERİ (BDM) 

 

• Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, 

D. (2020). Language models are few-shot learners. Advances in Neural Information 

Processing Systems, 33, 1877–1901. 

• Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley. 

• Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from 

incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series 

B, 39(1), 1–38. 

• Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep 

bidirectional transformers for language understanding. Proceedings of NAACL-HLT, 

4171–4186. 

• Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. 

(2013). Bayesian data analysis (3rd ed.). CRC Press. 

• Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. 

• Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning 

(2nd ed.). Springer. 

• Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and 

Helmholtz free energy. In Advances in neural information processing systems (Vol. 6). 

• Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural 

Computation, 9(8), 1735–1780. 

• Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer. 

• Jurafsky, D., & Martin, J. H. (2023). Speech and language processing (3rd ed., draft). 

Draft manuscript. 

• Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017). On 

large-batch training for deep learning: Generalization gap and sharp minima. 

International Conference on Learning Representations (ICLR). 

• Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. 

International Conference on Learning Representations (ICLR). 

• Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. International 

Conference on Learning Representations (ICLR). 

• Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and 

techniques. MIT Press. 

• Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word 

representations in vector space. arXiv preprint arXiv:1301.3781. 

• Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., ... & 

Gebru, T. (2019). Model cards for model reporting. Proceedings of the Conference on 

Fairness, Accountability, and Transparency, 220–229. 

• Murphy, K. P. (2023). Probabilistic machine learning: Advanced topics. MIT Press. 

• Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., & Srebro, N. (2017). The role of 

over-parameterization in generalization of neural networks. International Conference 

on Learning Representations (ICLR) workshop. 

• Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word 

representation. Proceedings of EMNLP, 1532–1543. 

• Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in 

speech recognition. Proceedings of the IEEE, 77(2), 257–286. 



E 

Eurasian Econometrics, Statistics & Empirical Economics Journal               2025, Volume:26 

 

 

125 

 

• Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q. V., Hinton, G., & Dean, J. 

(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts 

layer. International Conference on Learning Representations (ICLR). 

• Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, 

Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information 

Processing Systems, 30. 


